Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для экономических специальностей заочной формы обучения. 1. Пяти полевым радиостанциям разрешено во время учений работать на 6 радиоволнах





Вариант 10

1. Пяти полевым радиостанциям разрешено во время учений работать на 6 радиоволнах. Выбор волны на каждой станции производится наудачу. Найти вероятность того, что будут использованы различные радиоволны.

2. Девушка забыла последнюю цифру номера телефона своего жениха и набрала ее наугад. Определить вероятность того, что ей придется набирать номер не более трех раз.

3. В первом ящике содержится 20 деталей, из них 15 стандартных; во втором – 30 деталей, из них 24 стандартных; в третьем – 10 деталей, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика – стандартная.

4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.

а) Вероятность появления некоторого события в каждом из 5 независимых опытов равна 0,2. Определить вероятность появления этого события по крайней мере 3 раза.

б) Всхожесть семян данного сорта растений составляет 90%. Найти вероятность того, что из 900 посаженых семян число проросших будет: 1) равно 800, 2) заключено между 805 и 820.

5. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того, что Х примет значение x 1 равно 0,3. Найти закон распределения Х, зная математическое ожидание М[ X ] = 2,7 и дисперсию D[ X ] = 0,21.

6. Непрерывная случайная величина Х задана функцией распределения

Найти: а) параметр k; б) математическое ожидание; в) дисперсию.

7. Известны математическое ожидание а =9 и среднее квадратичное отклонение s=4 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (2, 10); б) отклонения этой величины от математического ожидания не более, чем на d=5.

8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью g=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости a=0,05.

x 3,0-3,6 3,6-4,2 4,2-4,8 4,8-5,4 5,4-6,0 6,0-6,6 6,6-7,2
n              

9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.

x              
y              

 

 


 

Обычный курс, 5 лет Семестр 2

ВЫСШАЯ МАТЕМАТИКА

Контрольная работа №3







Дата добавления: 2015-09-19; просмотров: 1304. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия