Для экономических специальностей заочной формы обучения. 1. На столе лежат 20 билетов
Вариант 7 1. На столе лежат 20 билетов. Какова вероятность того, что 3 наудачу взятых билета имеют номер не больше 5?. 2. Вероятность наступления события в каждом опыте одинакова и равна 0,2. Опыты производятся последовательно до наступления события. Определить вероятность того, что понадобится 4 опыта. 3. У сборщика имеется 16 деталей, изготовленных заводом №1, и 4 детали завода № 2. Наудачу взяты 2 детали. Найти вероятность того, что хотя бы одна из них окажется изготовленной заводом №1. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Стрелок производит три выстрела. Вероятность того, что он попадет в цель по крайней мере один раз, равна 0,992. Какова вероятность попадания в цель при одном выстреле? б) Всхожесть семян определенного сорта растений равна 0,95. Найти вероятность того, что из 500 посаженых семян число проросших будет: 1) ровно 485; 2) не менее 470, но не более 480. 5. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того, что Х примет значение x 1 равно 0,3. Найти закон распределения Х, зная математическое ожидание М[ X ] = 0,1 и дисперсию D[ X ] = 1,89. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =2 и среднее квадратичное отклонение s=5 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (6, 12); б) отклонения этой величины от математического ожидания не более, чем на d=3. 8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью g=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости a=0,05.
9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.
ВЫСШАЯ МАТЕМАТИКА Контрольная работа №3
|