Для экономических специальностей заочной формы обучения. 1. Брошены два игральных кубика
Вариант 9 1. Брошены два игральных кубика. Какова вероятность, что сумма выпавших очков будет равна 7? 2. Предположим, что для одной торпеды вероятность попасть в цель равна 0,7. Какова вероятность того, что три торпеды потопят корабль, если для потопления достаточно одного попадания торпеды в цель? 3. Сборщик получил 3 коробки деталей, изготовленных заводом №1, и 2 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь завода №1 стандартна равна 0,8, а завода №2 – 0,9. Сборщик наудачу извлек деталь из случайно выбранной коробки. Найти вероятность того, что извлечена стандартная деталь. 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) При передаче сообщения вероятность искажения одного знака равна 0,1. Какова вероятность того. что сообщение из 10 знаков содержит не более 3 искажений? б) Было посажено 400 деревьев. Вероятность того, что отдельное дерево приживется равно 0,8. Найти вероятность того, что число прижившихся деревьев: 1) равно 300, 2) больше 310, но меньше 330. 5. Дан перечень возможных значений дискретной величины Х: x 1=–2, x 2=1, x 3=4, а также даны математическое ожидание этой величины M[ X ]=2,5 и ее квадрата M[ X 2]=10,3. Найти закон распределения случайной величины Х. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =10 и среднее квадратичное отклонение s=4 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (5, 9); б) отклонения этой величины от математического ожидания не более, чем на d=6. 8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью g=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости a=0,05.
9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.
ВЫСШАЯ МАТЕМАТИКА Контрольная работа №3
|