Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для экономических специальностей заочной формы обучения. 1. Случайным образом выписаны 3 цифры





Вариант 14

1. Случайным образом выписаны 3 цифры. Найти вероятность того, что: а) все выписанные цифры одинаковые; б) все цифры различные; в) среди выписанных цифр ровно две совпадают.

2. Разрыв электрической цепи может произойти вследствие выхода из строя элемента А или двух элементов В и С, которые выходят из строя независимо друг от друга соответственно с вероятностями 0,3, 0,2 и 0,1. Определить вероятность разрыва цепи.

3. В группе спортсменов 7 лыжников, 5 велосипедистов и 2 бегуна. Вероятность выполнить квалифицированную норму такова: для лыжника 0,9, для велосипедиста 0,8 и для бегуна 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.

4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.

а) Студентам на контрольной работе предложено 10 вопросов, но каждый из которых дается правильный и неправильный ответ. Для получения хорошей оценки нужно указать не менее 80% правильных ответов. Какова вероятность получения хорошей оценки при простом отгадывании?

б) Посажено 500 семян гороха с вероятность прорастания 0,9. Найти вероятность того, что прорастет: 1) ровно 450 семян, 2) не менее 440, но не более 460 семян.

5. Дискретная случайная величина Х имеет только два возможных значения: x 1 и x 2, причем x 1 < x 2. Вероятность того, что Х примет значение x 1 равно 0,1. Найти закон распределения Х, зная математическое ожидание М[ X ] = 3 и дисперсию D[ X ] = 9.

6. Непрерывная случайная величина Х задана функцией распределения

Найти: а) параметр k; б) математическое ожидание; в) дисперсию.

7. Известны математическое ожидание а =1 и среднее квадратичное отклонение s=6 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (3; 9); б) отклонения этой величины от математического ожидания не более, чем на d=4.

8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью g=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости a=0,05.

x 190-200 200-210 210-220 220-230 230-240 240-250
n            

9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.

x              
y 7,4 8,4 9,1 9,4 9,5 9,5 9,4

 


 

Обычный курс, 5 лет Семестр 2

ВЫСШАЯ МАТЕМАТИКА

Контрольная работа №3







Дата добавления: 2015-09-19; просмотров: 1119. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия