Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модели соединений систем





Для построения моделей соединений систем в Matlab используются знаки арифметических действий. Эти операции перегружены, то есть, переопределены специальным образом для объектов классов tf, ss и zpk. Введем исходные модели, с которыми будем выполнять все операции:

>> f = tf(1, [1 1]);

>> g = tf(1, [2 1]);

· параллельное соединение

>> w = f + g

Transfer function:

3 s + 2

---------------

2 s^2 + 3 s + 1

· последовательное соединение

>> w = f * g

Transfer function:

---------------

2 s^2 + 3 s + 1

· контур с отрицательной обратной связью

>> w = feedback(f, g)

Transfer function:

2 s + 1

---------------

2 s^2 + 3 s + 2

Можно вычислить эту передаточную функцию и так:

>> w = f / (1 + g*f)

Transfer function:

2 s^2 + 3 s + 1

-----------------------

2 s^3 + 5 s^2 + 5 s + 2

Этот результат может показаться неожиданным. Дело в том, что обе передаточных функции имеют первый порядок, то есть, описываются дифференциальным уравнением (ДУ) первого порядка. Поэтому вся система должны описываться второго порядка, а мы получили третий. Чтобы разобраться в этом, преобразуем модель к форме «нули-полюса»:

>> w_zpk = zpk(w)

Zero/pole/gain:

(s+1) (s+0.5)

-----------------------

(s+1) (s^2 + 1.5s + 1)

Видно, что числитель и знаменатель передаточной функции содержат общий множитель s+1, который можно сократить, и остается система второго порядка. Для этого надо построить минимальную реализацию, сократив общие множители:

>> w = minreal (w)

Transfer function:

s + 0.5

---------------

s^2 + 1.5 s + 1

Эта передаточная функция совпадает с той, что выдает функция feedback.

· контур с положительной обратной связью

 

>> w = feedback(f, -g)

или

>> w = feedback(f, g, 1)

или

>> w = minreal (f/(1 - g*f))

Transfer function:

2 s + 1

-----------

2 s^2 + 3 s







Дата добавления: 2015-09-19; просмотров: 747. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия