Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотная характеристика





При подаче на вход линейной системы гармонического (синусоидального) сигнала с частотой (она измеряется в радианах в секунду), на выходе будет также гармонический сигнал той же частоты, но другой амплитуды и фазы[4] , где – амплитуда и – сдвиг фазы.

Частотная характеристика определяется как реакция системы на комплексный экспоненциальный сигнал . Для ее построения надо использовать подстановку в передаточной функции . Выражение называется частотной передаточной функцией или амплитудно-фазовой частотной характеристикой системы (АФЧХ).

Зависимость модуля величины от частоты называется амплитудной частотной характеристикой (АЧХ), а зависимость аргумента комплексного числа (фазы) от частоты ­– фазовой частотной характеристикой (ФЧХ): .

АЧХ показывает, насколько усиливается амплитуда сигналов разных частот после прохождения через систему, а ФЧХ характеризует сдвиг фазы сигнала.

Реальные объекты имеют строго правильную передаточную функцию, поэтому их АЧХ убывает с ростом частоты и асимптотически стремится к нулю. Говорят, что такой объект обладает свойством фильтра – фильтрует (не пропускает) высокочастотные сигналы (помехи, шумы измерений). Это свойство служит основой для использования метода гармонического баланса.

Частота, после которой значение АЧХ уменьшается ниже 0 дБ (коэффициент усиления меньше 1, сигнал ослабляется), называется частотой среза системы .Частота, после которой значение АЧХ падает ниже -3 дБ (коэффициент усиления меньше, чем 0.708), называется полосой пропускания системы . Для ее вычисления используют команду

>> b = bandwidth (f)

Максимум АЧХ соответствует частоте, на которой усиление наибольшее. Значение АЧХ при равно усилению при постоянном сигнале, то есть, статическому коэффициенту усиления . Это следует и из равенства .

Для систем с интегрирующими звеньями частотная характеристика стремится к бесконечности при . Это значит, что их выход бесконечно увеличивается или уменьшается при постоянном входном сигнале.

Чтобы построить частотные характеристики в Matlab, надо сначала создать массив частот в нужном диапазоне. Для этого можно использовать функции linspace (равномерное распределение точек по линейной шкале) и logspace (равномерное распределение точек по логарифмической шкале). Команда >> w = linspace (0, 10, 100);строит массив из 100 точек с равномерным шагом в интервале от 0 до 10, а команда >> w = logspace (-1, 2, 100);– массив из 100 точек с равномерным шагом по логарифмической шкале в интервале от до .

Частотная характеристика на сетке w для линейной модели f (заданной как передаточная функция, модель в пространстве состояний или в форме «нули-полюса») вычисляется с помощью функции freqresp: >> r = freqresp(f, w);

Функция freqresp возвращает трехмерный массив. Это связано с тем, что она применима и для многомерных моделей (с несколькими входами и выходами), передаточная функция которых представляет собой матрицу. Первые два индекса обозначают строку и столбец в этой матрице, а третий – номер точки частотной характеристики. Для системы с одним входом и одним выходом удобно преобразовать трехмерный массив в одномерный командой

>> r = r(:);

Для вывода графика АЧХ на экран можно использовать команды Matlab

>> plot (w, abs(r));

>> semilogx (w, abs(r));

>> loglog (w, abs(r));

В первом случае масштаб обеих осей координат – линейный, во втором случае используется логарифмический масштаб по оси абсцисс (частот), в последнем ­– логарифмический масштаб по обеим осям. Для вычисления фазы (в градусах) используется команда

>> phi = angle(r)*180/pi;

после чего можно строить ФЧХ, например:

>> semilogx (w, phi);







Дата добавления: 2015-09-19; просмотров: 833. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия