Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. - М., 1980.





2. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисления. - М.: Наука, 1980.

3. Бугров Я.С., Никольский С.М. Дифференциальные уравнения, кратные интегралы, ряды, функции комплексного переменного. - М.: Наука, 1981.

4. Ефимов А.В. Краткий курс аналитической геометрии. - М.: Наука, 1965.

5. Герасимович А.И. Математическая статистика. – Мн., 1983.

6. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высш. школа, 1972.

7. Коваленко И.Н., Филиппова А.А. Теория вероятностей и математическая статистика. - М.: Высш. школа, 1982.

8. Элементы линейной алгебры / Под ред. Р.Ф.Апатенок. - Мн.: Выш. школа, 1977.

9. Араманович В.Г., Левин В.И. Уравнения математической физики. - М.: Наука, 1964.

10. Сборник индивидуальных заданий по высшей математике. В 3 ч. / Под ред. проф. А.П.Рябушко. – Мн.: Выш. школа, 1990.

11. Сборник индивидуальных заданий по теории вероятностей и математической статистике / Под ред. проф. А.П.Рябушко. – Мн.: Выш. школа, 1992.

 

Дополнительная литература

1. Пискунов Н.С. Дифференциальное и интегральное исчисления. В 2 т. - М.: Высш. школа, 1981.

2. Воеводин В.В. Линейная алгебра. - М.: Физматгиз, 1980.

3. Жевняк Р.М., Карпук А.А. Высшая математика. В 5 ч. – Мн.: Выш. школа, 1985.

 

2.2. Программа курса «Высшая математика» для

экономических специальностей

 

Тема 1. Элементы линейной алгебры и аналитической геометрии

Матрицы, определители. Операции над матрицами. Обратная матрица. Системы линейных уравнений и неравенств и их геометрический смысл. Экономическая интерпретация многомерных векторов и матриц и их использование в плановых расчетах.

Решение Крамеровских систем уравнений. Метод Гаусса для решения произвольных систем алгебраических уравнений.

3. Линейное пространство. Базис, размерность. Линейные операторы. Пространства R1, R2, R3. Преобразование матрицы линейного оператора при переходе к новому базису.

4. Скалярное, векторное и смешанное произведение в R3. Евклидово пространство. Ортогональный базис. Угол между двумя векторами.

Метод координат. Расстояние между точками в пространстве. Уравнение линии на плоскости. Прямая и плоскость в пространстве. Расстояние от точки до прямой и плоскости.

 

Тема 2. Введение в математический анализ

 

Логическая символика. Основные числовые множества. Элементарные функции, их свойства и графики.

Предел функции и его свойства. Непрерывность функции в точке и классификация точек разрыва. Непрерывность основных элементарных функций.

Техника вычисления пределов. Бесконечно большие и малые функции. Сравнение бесконечно малых.

Глобальные свойства непрерывных функций. Приближенное решение уравнений (методом половинного деления).

Производная функции, ее механический и геометрический смысл. Связь непрерывности и дифференцируемости функции.

Основные правила дифференцирования. Теоремы о производной сложной и обратной функции.

Понятие о производных высших порядков. Дифференциал и его геометрический смысл.

 

Тема 3. Применение дифференциального исчисления для

исследования функций и построения графиков

 

Экстремумы функций. Основные теоремы о дифференцируемых функциях (Ферма, Ролля, Лагранжа). Оценка погрешности вычислений.

Формула Тейлора. Правило Лопиталя. Примеры.

Условия монотонности функции. Признаки точек экстремума и перегиба. Выпуклость функции и ее достаточное условие.

Асимптоты функции и общая схема исследования функции и построения графиков.

Тема 4. Функции нескольких переменных

Понятие функции нескольких переменных. Частные производные. Дифференцируемость функций нескольких переменных. Полный дифференциал.

Частные производные высших порядков. Формула Тейлора.

Экстремум функций нескольких переменных. Необходимое и достаточное условия экстремума. Обзор методов определения локальных и глобальных экстремумов функций нескольких переменных.

Эмпирические формулы. Выбор параметров эмпирических формул методом наименьших квадратов.

 

Тема 5. Неопределенный интеграл

 

21. Первообразная и неопределенный интеграл. Простейшие приемы интегрирования: интегрирование заменой переменной и по частям.







Дата добавления: 2015-09-19; просмотров: 590. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия