Методика решения задачи размещения
Считаются заданными: площадь региона , количество абонентов в сети , капитальные затраты на установку одного ВЦ и АП и соответственно; стоимость 1 км магистрального канала связи между ВЦ W3 и стоимость 1 км канала связи между АП и ВЦ . Нужно определить координаты установки ВЦ и АП, их количество в регионе, а также конфигурацию системы обмена данными, чтобы обеспечить минимум затрат и возможность обработки объемов информации. Из очевидных геометрических соображений следует, что капитальные затраты на магистральные каналы связи между ВЦ можно определить из следующего выражения: (9) где — индекс рассматриваемого ВЦ; — индексы находящегося правее и — находящегося ниже ВЦ (см. рис. 2); —проекция прямой, связывающей -й ВЦ с ВЦ, находящиеся ниже по диагонали, на вертикальную и горизонтальную оси координат, жестко связанных с контурами региона. Величина не зависит от значений и . В то же время согласно неравенству Коши вторая сумма в квадратных скобках формулы (9) минимизируется при для любых . Основываясь на аналогичных рассуждениях, можно прийти к выводу, что минимизация суммарной длины каналов связи между ВЦ и АП также достигается при равномерном размещении АП в зоне обслуживания ВЦ. Исходя из изложенного, определяют капитальные вложения на создание всех ВЦ к АП в обслуживаемом регионе. Опуская промежуточные алгебраические преобразования в формулах, полученных из геометрических построений, приведем основное соотношение для постановки задачи минимизации затрат на проектируемую сеть: . Здесь и — размеры зоны, заданной в виде прямоугольника со сторонами и (рис. 2). Для конкретных структур сети ЭВМ значения , , и могут быть выбраны из некоторого множества вариантов. В частности, с учетом рекомендаций о равномерном распределении ВЦ и АП в регионе значения и для любого варианта могут быть вычислены следующим образом: , (11) , (12) . (13) Найдем частные производные от полных затрат W по переменным R н г с целью определения экстремальных значений этих величин для функции W и приравняем их нулю: (14) Решая совместно эти два уравнения как систему путем подстановки, получим искомое соотношение, которое является уравнением 11-й степени относительно R: (15) Выражения для коэффициентов в общем виде необычайно громоздки, поэтому рассмотрим пример расчета со следующими данными: [км2]; ; [тыс. грн.]; [тыс. грн.]; [тыс. грн./км]; [тыс. грн./км]. Найдя корни алгебраического уравнения, для данных значений коэффициентов, найдем множество значений корней . Из этого множества, естественно, исключаются элементы, определяющие мнимые и отрицательные значения, остальные проверяются на соответствие физическому смыслу задачи. Выбрав одно наиболее подходящее значение км, находим далее соответствующие этому значению величины, определяющие оптимальное распределение затрат для синтезируемой сети: 1) среднее расстояние между АП и ВЦ: км; 2) оптимальное число узлов (ВЦ в данном случае) в сети: 3) среднее число АП, подсоединяемых в каждом узле, где — среднее число абонентов в одном узле. Для топологического проектирования из перечисленных параметров наиболее важным является оптимальное число узлов в сети. В тех случаях, когда стоимость является главным критерием, синтез топологической структуры может быть проведен по минимуму этого критерия. Допустим, что для некоторых значений исходных данных , , , , , был получен результат, соответствующий оптимальному числу . Реальное размещение ВЦ по территории региона может не соответствовать равномерному их распределению. Но при небольшом числе узлов путем подбора конкретных мест расположения ВЦ можно выбрать наиболее близкий реальный вариант и принять его для последующего анализа. Предположим, что в результате вычислений получилось равно восьми, а реальное место расположение ВЦ, объединяемых в сеть, соответствует схеме, показанной на рис. 3. При первоначальных предположениях, считалось, что связи между узлами образуют полносвязную структуру. Однако в ходе синтеза архитектуры такой сети можно теоретически рассмотреть и другие варианты топологических структур, оценить, насколько возможно дальнейшее уменьшение стоимости, если это требуется. В дальнейшем при рассмотрении вопроса синтеза топологии ИС будем ориентироваться на простую структуру типа дерева, полагая, что таким образом можно понизить стоимость проектируемой сети и сравнить ее с максимальной, соответствующей полносвязной структуре. Для решения задачи минимизации структуры воспользуемся моделью сети в виде взвешенного графа, у которого веса дуг характеризуют, например, протяженности каналов между соответствующими узлами ИС. Так как рассматривается сеть с относительно малым числом ребер, для нее удобным способом решения задачи минимизации структуры является алгоритм Краскала, который заключается в следующем [1].
Рисунок 3 - План размещения узлов в синтезируемой сети
Упорядочим ребра по весу, выбирая из множества ребер графа, при составлении списка, каждый раз ребро минимального веса, и далее по возрастанию как показано в табл. 1. Затем, пользуясь списком, строим минимальное покрывающее дерево, начиная с первого ребра и добавляя последующие по порядку. Если очередное выбранное ребро приводит к образованию цикла, то его отбрасываем. После выбора ребра ( —число вершин графа) процесс заканчивается.
Таблица 1 – Список ребер с их весовыми значениями
|