Градиент и производная по направлению.
Рассмотрим функцию двух переменных z = f (x,y). Градиентом функции z=f (x,y) в точке М0 (х0, у0) называется ВЕКТОР, координатами которого являются частные производные этой функции, вычисленные в точке М0: , . Градиент показывает направление, в котором скорость изменения функции максимальна, причем норма (длина) градиента равна величине этой максимальной скорости. На плоскости ХОY выберем фиксированное направление, задаваемое вектором . Переместим точку М0 в области в положение М(х0+Dх, у0+Dу). Величины Dх и Dу называются приращение аргументов, а D z = f (x0+Dx, y0+Dy)- f (x0, y0) – полным приращением функции z при переходе от точки М0 к точке М. Тогда производной функции z= f (x, y) по направлению вектора называется предел Производная по направлению выражает скорость изменения функции в этом направлении. Производная по направлению есть скалярное произведение градиента на единичный вектор заданного направления, т.е. Таким образом, для нахождения градиента функции достаточно найти ее первые частные производные и вычислить из в заданной точке А. Для поиска производной по направлению надо предварительно найти длину (норму) заданного вектора как квадратный корень из суммы квадратов координат, затем найти координаты вектора , поделив координаты исходного вектора на найденное число. После этого перемножить скалярно найденный ранее вектор градиент и полученный вектор.
|