Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Градиент и производная по направлению.





Рассмотрим функцию двух переменных z = f (x,y). Градиентом функции z=f (x,y) в точке М0 (х0, у0) называется ВЕКТОР, координатами которого являются частные производные этой функции, вычисленные в точке М0:

, .

Градиент показывает направление, в котором скорость изменения функции максимальна, причем норма (длина) градиента равна величине этой максимальной скорости.

На плоскости ХОY выберем фиксированное направление, задаваемое вектором .

Переместим точку М0 в области в положение М(х0+Dх, у0+Dу). Величины и называются приращение аргументов, а D z = f (x0+Dx, y0+Dy)- f (x0, y0) – полным приращением функции z при переходе от точки М0 к точке М. Тогда производной функции z= f (x, y) по направлению вектора называется предел

Производная по направлению выражает скорость изменения функции в этом направлении.

Производная по направлению есть скалярное произведение градиента на единичный вектор заданного направления, т.е.

Таким образом, для нахождения градиента функции достаточно найти ее первые частные производные и вычислить из в заданной точке А. Для поиска производной по направлению надо предварительно найти длину (норму) заданного вектора как квадратный корень из суммы квадратов координат, затем найти координаты вектора , поделив координаты исходного вектора на найденное число. После этого перемножить скалярно найденный ранее вектор градиент и полученный вектор.







Дата добавления: 2015-09-19; просмотров: 1366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия