Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Абсолютная и относительная погрешности косвенных измерений





Определив погрешности прямых измерений, приступают к нахождению погрешностей косвенных измерений. Эти погрешности, в общем случае, выражаются через погрешности прямых измерений, через средние значения прямых измерений и через постоянные коэффициенты.

Допустим, нам надо определить погрешность Df величины f, являющейся функцией трёх независимых переменных x, y и z. Предполагается, что величины x, y и z могут быть измерены непосредственно. Это можно сделать с помощью формулы:

 

. (2.11)

 

Здесь величины , и – это частные производные функции f по переменным x, y и z соответственно.

Аналогичные формулы можно записать и для другого числа переменных. Каждому независимому переменному в этой формуле под знаком корня соответствует слагаемое определённого вида.

В некоторых случаях погрешность косвенных измерений можно определять, не прибегая к общей формуле (2.11). Допустим, что независимые переменные x, y и z входят в формулу для f в качестве сомножителей с показателями степени α, β и γ соответственно, т. е.:

 

f = A×xα×yβ×zγ + C, (2.12)

 

где A и C – произвольные константы. Тогда можно утверждать, что для относительных погрешностей выполняется следующее соотношение:

 

εf = |α|×εx + |β|×εy + |γ|×εz, (2.13)

 

причём величины α, β и γ могут быть как положительными, так и отрицательными.

 

Зная средние значения , и , а также погрешности Dx, Dy и Dz, с помощью этого выражения можно легко найти абсолютную погрешность измерения Df. Формулу (2.13) можно обобщить для случая другого числа переменных.

 

 







Дата добавления: 2015-09-15; просмотров: 513. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия