Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обозначения, принятые в пособии





S – центр проецирования.

Плоскости проекций:

П – произвольная;

П1 – горизонтальная; П2 – фронтальная; П3 – профильная.

Оси проекции: ОX – ось абсцисс; ОY – ось ординат; ОZ – ось аппликат; начало координат – прописная буква О.

Точки, расположенные в пространстве, обозначаются прописными буквами латинского алфавита, а также арабскими цифрами: A, B, C, D,…, L, M, N; 1, 2, 3, 4,…,12, 13, 14,…

Линии, расположенные произвольно относительно плоскостей проекций, обозначаются строчными буквами латинского алфавита:

a, b, c,…; l, m, n.

Линии уровня обозначаются: h – горизонталь; f – фронталь;p – профильная прямая.

Примечание. Для проецирующих прямых специальных обозначений не предусмотрено.

Плоскости обозначаются прописными буквами латинского и греческого алфавита: P, Q, R, S, T, S, L, Q…

Для обозначения плоскостей уровня используются прописные буквы только греческого алфавита: Г – горизонтальная плоскость; Ф – фронтальная плоскость; Р – профильная плоскость.

Проекции точек, линий и других геометрических образов обозначаются теми же буквами (или цифрами), что и оригинал, но с добавлением индекса А1, А2, А3 или 11, 12, 13, соответствующей плоскости проекций, на которой они получены.

Обозначения отношений между геометрическими образами сведено в табл. 1, а обозначения теоретико-множественные – в табл. 2.

 

Таблица 1

Обозначение отношений между геометрическими образами

Обозначение Содержание Пример символической записи
º совпадение (AB) º (CD) – прямая, проходящая через точки А и В, совпадает с прямой, проходящей через точки C и D
= равенство IABI = ICDI – длина отреза АВ равна длине отрезка CD
^ перпендикулярность m ^ Р – прямая m перпендикулярна плоскости Р
II параллельность а II b – прямые а и b параллельны

 

Таблица 2

Обозначения теоретико-множественные

Обозначение Содержание Пример символической записи в начертательной геометрии
Î является элементом D ' b – прямая b проходит через точку D
Ì включает, содержит a Ì Q– прямая a принадлежит плоскости Q
É проходит через b ÉR – плоскость R проходит через прямую b
пересечение MN = Q ∩ R – прямая MN есть линия пересечения плоскостей Q и R

 

 

МЕТОД ПРОЕКЦИЙ

Основные понятия метода проецирования

В любой науке есть базовые понятия, которые лежат в ее основе. Для начертательной геометрии таким понятием является проецирование.

Проецирование – процесс получения изображения на плоскости.

Рис.1.1. Метод проецирования

Сущность метода – имеется точка пространства A. Необходимо построить ее изображение на плоскости П. Операция проецирования заключается в проведении через точку А прямой, которая бы пересекала плоскость П. Эта прямая называется проецирующим лучом. Изображение Aп, полученное в результате пересечения плоскости П проецирующим лучом, называется проекцией точки А на плоскости П. А плоскость, на которой получено изображение, называется плоскостью проекций П (рис. 1.1).

Если необходимо получить проекцию более сложного геометрического образа, к примеру треугольника, то проецирующие лучи нужно проводить через три его вершины.

 







Дата добавления: 2015-09-15; просмотров: 402. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия