Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейчатые развертываемые поверхности вращения





Наименование поверхности Комплексный чертёж 3D модель
    Конус вращения  
    Цилиндр вращения  
    Гиперболоид однополостный    

Цилиндрическая поверхность. Поверхность, образованная параллельным перемещением прямолинейной образующей l по кривой направляющей m, называется цилиндрической.

Конус вращения. Поверхность, образованная движением прямолинейной образующей l, проходящей через неподвижную точку – вершину О по криволинейной направляющей m, называется конической.

Однополостный гиперболоид вращения. Поверхность, образованная вращением прямолинейной образующей l по криволинейной направляющей m вокруг оси i, при этом образующая l и ось i – скрещиваются, называется однополостным гиперболоидом вращения.

Нелинейчатые неразвертываемые поверхности вращения. Нелинейчатые неразвертываемые поверхности вращения это поверхности, образованные вращением криволинейной образующей l вокруг неподвижной оси поверхности i по криволинейной направляющей m, развертки которых невозможно совместить с плоскостью без разрывов и складок. К распространенным нелинейчатым неразвертываемым поверхностям вращения относятся тор и сфера.

Тор. Поверхность, образованная вращением окружности (образующей l) вокруг оси i, не проходящей через ее центр, но расположенной в плоскости окружности. В зависимости от соотношения значений радиуса образующей l окружности R и расстояния r от центра окружности до оси вращения i возможны три разновидности поверхностей (табл. 7.2).

Открытый тор. Если R < r, то образующая окружность l не пересекает ось вращения i, поверхность называется кольцом или открытым тором.

Закрытый тор. Если R ≥ R, то окружность касается оси или пересекает ее, поверхность называется закрытым тором.

Сфера. Если r = 0, то образуется сфера.

Таблица 7.2







Дата добавления: 2015-09-15; просмотров: 868. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия