Пример решения типовых задач
Задача 11 а. Даныпризматическая поверхность, секущая плоскость Δ(Δ2) (рис. 7.22). Построить сечение поверхности плоскостью. Определить натуральную величину сечения. Алгоритм решения. 1. Выполнить анализ условия задачи. Определить признаки понятий: «гранная поверхность», «призматическая поверхность», «плоскость», «сечение гранной поверхности плоскостью». 2. Определить алгоритм решения исходя из следующего: необходимо построить линии пересечения данной секущей плоскости с каждой из граней призмы. 3. Выполнить построения согласно алгоритму (рис. 7.23): 3.1. Отметить точки 12, 22, 32, которые являются фронтальными проекциями точек пересечения плоскости Δ2 с ребрами граней данной призмы. 3.2. Определить горизонтальные проекции точек 1, 2, 3, 4 (точки 11, 21, 31). Для этого необходимо опустить перпендикуляры линий связи из точек 12, 22, 32 до пересечения с соответствующими ребрами призмы: 1Î AA`, 2Î BB`, 3Î CC`. 3.3. Соединить последовательно точки 11, 21, 31, обвести горизонтальную проекцию контура сечения с учетом видимости.
Рис. 7.23. Геометрические построения в задаче 11 а
3.4. Найти натуральную величину методом плоскопараллельного переноса: – привести плоскость Δ в положение, параллельное П1 (Δ`2║OX); – на новой проекции плоскости перенести точки Δ (Δ`2), отметить точки 1`2, 2`2, 3`2 на расстоянии таком же, как на фронтальной проекции; – из точек 1`2, 2`2, 3`2 опустить перпендикуляры линий связи до пересечения с горизонтальными линиями, проведенными из точек 11, 21, 31. На пересечении соответствующих вертикальных линий связи и горизонтальных прямых получаем точки 1`1, 2`1, 3`1, принадлежащие контуру сечения призмы плоскостью Δ. Задача 11 б. Даны цилиндрическая поверхность, секущая плоскость Δ(Δ2) (рис. 7.24). Построить сечение поверхности плоскостью. Определить натуральную величину сечения. Алгоритм решения. 1. Выполнить анализ условия задачи. Определить признаки понятий: «поверхность», «поверхность цилиндрическая», «плоскость», «сечение цилиндрической поверхности плоскостью». 2. Определить алгоритм решения исходя из следующего: необходимо определить точки, принадлежащие контуру сечения с помощью образующих цилиндрической поверхности. Натуральную величину сечения можно определить методом замены плоскостей проекций. 3. Выполнить построения согласно алгоритму (табл. 7.6). Таблица 7.6
|