Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основні наслідки мультиколінеарності.





1. Падає точність оцінювання, яка виявляється так:

а) помилки деяких конкретних оцінок стають занадто великими;

б) ці помилки досить корельовані одна з одною;

в) дисперсії оцінок параметрів різко збільшуються.

2. Оцінки параметрів деяких змінних моделі можуть бути незначущими через наявність їх взаємозв'язку з іншими змінними, а не тому, що вони не впливають на залежну змінну. У такому разі мно­жина вибіркових даних не дає змоги цей вплив виявити.

3. Оцінки параметрів стають досить чутливими до обсягів сукуп­ності спостережень. Збільшення сукупності спостережень іноді мо­же спричинитися до істотних змін в оцінках параметрів.

З огляду на перелічені наслідки мультиколінеарності при побу­дові економетричної моделі потрібно мати інформацію про те, що між пояснювальними змінними не існує мультиколінеарністі.

Ознаки мультиколінеарності такі.

1. Коли серед парних коефіцієнтів кореляції пояснювальних змінних є такі, рівень яких наближається або дорівнює множинному коефіцієнту кореляції, то це означає можливість існування мульти­колінеарності. Інформацію про парну залежність може дати симет­рична матриця коефіцієнтів парної кореляції або кореляції нульово­го порядку між пояснювальними змінними:

Проте, коли до моделі входять більш як дві пояснювальні змінні, то вивчення питання про мультиколінеарність не може обмежуватись інформацією, що її дає ця матриця. Явище мультиколінеарності в жодному разі не зводиться лише до існування парної кореляції між незалежними змінними.

Більш загальна перевірка передбачає знаходження визначника (детермінанта) матриці r, який називається детермінантом кореляції і позначається | r |. Числові значення детермінанта кореляції задовольняють умову: | r | [0,1].

2. Якщо | r | = 0, то існує повна мультиколінеарність, а коли | r | = 1, мультиколінеарність відсутня. Чим ближче | r | до нуля, тим певніше можна стверджувати, що між пояснювальними змінними існує мультиколінеарність. Незважаючи на те, що на числове значення | r | впливає дисперсія пояснювальних змінних, цей показник можна вважати точковою мірою рівня мультиколінеарності.

3. Якщо в економетричній моделі знайдено мале значення пара­метра âk при високому рівні частинного коефіцієнта детермінації і при цьому F -критерій істотно відрізняється від нуля, то це та­кож свідчить про наявність мультиколінеарності.

4. Коли коефіцієнт частинної детермінації , який обчислено для регресійних залежностей між однією пояснювальною змінною та іншими, має значення, яке близьке до одиниці, то можна говорити про наявність мультиколінеарності.

5. Нехай при побудові економетричної моделі на основі покрокової регресії введення нової пояснювальної змінної істотно змінює оцінку
параметрів моделі при незначному підвищенні (або зниженні) коефіці­єнтів кореляції чи детермінації. Тоді ця змінна перебуває, очевидно, у
лінійній залежності від інших, які було введено до моделі раніше.

Усі ці ознаки мультиколінеарності мають один спільний недолік: ні одна з них чітко не розмежовує випадки, коли мультиколінеарність істотна і коли нею можна знехтувати.

Найповніше дослідити мультиколінеарність можна за допомогою алгоритму Фаррара–Глобера. Цей алгоритм має три види статистич­них критеріїв, згідно з якими перевіряється мультиколінеарність усьо­го масиву незалежних змінних (χ2 – «хі»-квадрат); кожної незалеж­ної змінної з рештою змінних (F -критерій); кожної пари незалежних змінних (t-критерій).

Усі ці критерії при порівнянні з їх критичними значеннями дають змогу робити конкретні висновки щодо наявності чи відсутності мультиколінеарності незалежних змінних.

 

Опишемо алгоритм Фаррара–Глобера.

Крок 1. Стандартизація (нормалізація) змінних.

Позначимо вектори незалежних змінних економетричної моделі через х1, х2, х3... хm. Елементи стандартизованих векторів обчислимо за формулами:

,

де n – число спостережень (і = ); m – число пояснювальних змінних (k = ); – середнє арифметичне k-ї пояснювальної змінної; – дисперсія k -ї пояснювальної змінної.

 

Крок 2. Знаходження кореляційної матриці, виходячи з двох ме­тодів нормалізації змінних

,

де X* – матриця стандартизованих незалежних (пояснювальних) змінних; – матриця, транспонована до матриці X*.

 

Крок 3. Визначення критерію χ2 («хі»-квадрат):

,

де | r | – визначник кореляційної матриці r.

Значення цього критерію порівнюється з табличним при ступенях вільності і рівні значущості α. Якщо χ2факт2табл, то в масиві пояснювальних змінних існує мультиколінеарність.

 

Крок 4. Визначення оберненої матриці:

.

 

Крок 5. Обчислення F -критеріїв:

,

де ckk – діагональні елементи матриці С. Фактичні значення критеріїв порівнюються з табличними при n-m і m- 1 ступенях вільності і рівні значущості α. Якщо Fk факт > F табл., то відповідна k -та незалежна змінна мультиколінеарна з іншими.

Коефіцієнт детермінації для кожної змінної

.

 

Крок 6. Знаходження частинних коефіцієнтів кореляції:

,

де ckj – елемент матриці С, що міститься в k -му рядку і j -му стовпці; ckk і cjj – діагональні елементи матриці С.

 

Крок 7. Обчислення t - критеріїв:

.

Фактичні значення критеріїв tkj порівнюються з табличними при n-m ступенях вільності і рівні значущості α. Якщо tkj( ф) >t табл., то між незалежними змінними xk і xj існує мультиколінеарність.

 

Розглянемо застосування алгоритму Фаррара–Глобера для розв'язування конкретної задачі.

 

Приклад. На середньомісячну заробітну плату впливає ряд чинників. Вирізнимо серед них продуктивність праці, фондоміст­кість та коефіцієнт плинності робочої сили. Щоб побудувати економетричну модель заробітної плати від згаданих чинників згідно з методом найменших квадратів, потрібно переконатися, що продук­тивність праці, фондомісткість та коефіцієнт плинності робочої сили як незалежні змінні моделі – не мультиколінеарні. Вихідні дані наведені в табл. 1.

Таблиця 1

Номер цеху Продуктивність праці, людино-днів Фондомісткість, млн. грн. Коефіцієнт плинності робочої сили, %
    0,89 0,43 0,70 0,61 0,51 0,51 0,65 0,43 0,51 0,92 19,5 15,6 13,5 9,5 23,5 12,5 17,5 14,5 14,5 7,5
Σ   6,16 148,1

Дослідити наведені чинники на наявність мультиколінеарності.







Дата добавления: 2015-09-15; просмотров: 1953. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия