Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Simulation of an Inherently Discrete-Time System





We begin with an inherently discrete-time system most of us are familiar with, namely, a fixed interest loan with constant periodic payments. An amount of money is borrowed for a specified period of time, and equally spaced instalments are paid to the lender until the loan is completely repaid. The interest rate on the loan is established at the time of the loan. Furthermore, each payment consists of a portion that reduces the loan principal and the remaining portion that is interest on the outstanding balance.

The situation is illustrated in Figure 3.1.

 

Fig. 3.1 Repayment and amortization of a loan.

 

The system parameters consist of:

: Loan amount

: Interest rate per period (fixed for the duration of the loan)

: Number of interest periods for duration of loan

The discrete-time input

(3.3)

is the constant payment A made at the end of the th interest period. The discrete-time outputs are

: Outstanding balance of loan immediately following the th payment

: Portion of th payment used to reduce the outstanding balance

: Interest portion of th payment

The unpaid balance after the st payment is simply the unpaid balance following the th payment plus the interest accrued for one period on the unpaid balance minus the amount of the st payment. Thus,

(3.4)
(3.5)

, the portion of used for loan principal reduction, is equal to the reduction in outstanding balance from the th to the st payment, that is,

(3.6)

, the interest portion of , is obtained from

(3.7)   (3.8)

It can be shown that the constant payment necessary to fully repay the loan in periods, that is, make , is given by

(3.9)

 

Equations (3.5), (3.6), and (3.8) are the difference equations for the first-order discrete-time system in Figure 3.1.

 

 

Task

A car loan in the amount of $125,000 is to be paid off in 30 years with an annual interest rate of 8%. Use the Simulink loan simulation to find

(a) The monthly instalment

(b) The unpaid balance after the 120th payment

(c) The principal portion of the 200th payment

(d) The total interest paid over the life of the loan

(e) The time required for the unpaid balance to equal $62,500

Note the use of a single ‘‘Unit Delay’’ block to generate the signal and the sum block in the upper right corner producing as the difference of and the payment amount according to Equation (3.5).

Use Backward (implicit) Euler ‘‘Discrete–Time Integrator’’ for accurate computing.

The ‘‘Simulation Parameters’’ dialog box is shown in Figure 3.2. A ‘‘Fixed–step’’ integrator with ‘‘Fixed-step size’’ of 1 is selected to force the simulation to step through integer values of discrete time. Since there is no continuous-time integration present in an inherently discrete-time system, the ‘‘discrete (no continuous states)’’ option is chosen from the drop-down menu of integrators.

Fig. 3.2 Simulation parameters dialog box for loan simulation.

 

The unpaid balance is shown in Figure 3.3. As expected, the loan balance is zero following the 360th monthly payment.

Fig. 3.3 Unpaid balance vs. interest period .

The total monthly payment , interest portion , and principal portion are shown in Figure 3.4. Note that the early payments consist almost entirely of interest with only a small amount going towards principal reduction. As the loan progresses, the portion of each monthly instalment used to reduce the outstanding balance increases. Conversely, the interest portion of each subsequent payment is less than the previous one.

The total interest paid over the life of the loan is computed in two different ways. The simplest approach is to compute .

Fig. 3.4 Monthly installment , interest portion , and principal portion vs.

A Simulink diagram of the system is shown in Figure 3.5.

Fig. 3.5 Simulink diagram of loan repayment

 

 

Vocabulary:

loan кредит
loan amount сумма кредита
loan repayment погашение кредита
interest rate процентная ставка
total interest paid суммарные выплаченные проценты
installment очередной взнос
interest portion выплаченные проценты по кредиту
principal portion погашение тела кредита

 







Дата добавления: 2015-09-15; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия