Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет болтовых соединений из условия равнопрочности (порядок расчета проиллюстрировать на примере изгибаемыхэлементов)





Рис. 13.12. Болтовое соединение, нагруженное растягивающей силой.
Рис. 13.13. Болтовое соединение, нагруженное поперечной силой.

Стандартные болты, винты шпильки, гайки с крупными шагами спроектированы по условиям равнопрочности, то есть таким образом, что разрушение по любому из видов напряжений может произойти приметно при одной и той же нагрузке на соединение. Это условие позволяет выполнять предварительный (проектный) расчёт соединения в упрощенном варианте. Наиболее часто встречаются три простейшие статически определимые конструктивные схемы (рис. 13.12…13.14). Для схемы (рис. 13.12) с растягивающей рабочей нагрузкой приложенной вдоль продольной оси стержня винта (болта, шпильки) диаметр резьбового стержня по заданному внешнему усилию выбирают по формуле

; (13.11)

где F0 – усилие воспринимаемое (передаваемое) резьбовым соединением, d1 – внутренний диаметр резьбовой части стержня, - допускаемые напряжения для материала стержня при растяжении. Допускаемые напряжения на растяжение для разных сталей принимают в соответствии с табл. 13.2.

Таблица 13.2
Отношение [s]р/sТ для болтов резьбовых соединений

Сталь При постоянной нагрузке и диаметре резьбы, мм При отнулевой нагрузке и диаметре резьбы, мм
Св. 6 до 16 Св. 16 до 30 Св. 6 до 16 Св. 16 до 30
Углеродистая 0,20… 0,25 0,25…0,40 0,08…0,12 0,12
Легированная 0,15…0,20 0,20…0,30 0,10…0,15 0,15

Используя таблицы стандартных резьб по данному внутреннему диаметру и выбранному шагу резьбы можно подобрать необходимый диаметр стержня. Для стержня с крупной резьбой, обращая формулу 13.5, получаем

(13.12)

с последующим округлением результат до ближайшего большего стандартного значения.

Если болт поставлен в отверстие с зазором (рис. 13.13) и должен удерживать скрепляемые детали от взаимного поперечного смещения за счёт сил трения, то в этом случае диаметр болта подбирается по формуле

. (13.13)

Далее диаметр стержня болта, винта или шпильки определяется аналогично предыдущему варианту. Значение коэффициента трения в формуле (13.13) зависит от множества разных факторов и может меняться в широких пределах (0,06…0,3).







Дата добавления: 2015-09-15; просмотров: 470. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия