Диффузия примесных атомов в полупроводниках
Для построения потенциальной диаграммы рассмотрим контур 42а3б4 электрической схемы, приведенный на рисунке 2. Примем потенциал узла 4 равным нулю. Тогда в соответствии с направлением обхода контура и на основании рассчитанных выше значений токов, действующих в цепи, получим следующую векторную диаграмму (рисунок 3).
φ4 = 0; φ2 = φ4 –I4R4 = 0 – (-1,04)·2 = 2,08 В; φа = φб + Е1 = 2,08+14 = 16,08 В; φ3 = φа – I1R1 = 16,08-(-1,43)·5 =16,08+7,15=23,23 В; φб = φа – Е2 = 23,23-25 = -1,77 В; φ4 = φб + I2R2 = -1,77+0,56·2 =-0,65≈0 В.
Задание 12-7
1. Описать теорию диффузии примеси из источника при постоянной концентрации примеси на поверхности кристалла и диффузии из источника с фиксированным количеством примеси в приповерхностном слое кристалла. 2. Определить глубину залегания диффузионного р/n-перехода после загонки примеси в течение времени tзаг. 3. Определить полное количество диффузанта (Q) введенного в процессе загонки tзаг. 4. Определить глубину залегания диффузионного р/n-перехода после разгонки tразг. 5. Построить графики функции распределения концентрации примеси по глубине кристаллической подложки N(x) в интервале 0 – 6 мкм после разгонки для параметра времени t1,t2,t3. 6. Описать экспериментальные методы определения глубины залегания диффузионного р/n-перехода.
Введение
Совершенствование технологии производства полупроводниковых материалов и приборов связано с контролем их электрофизических параметров. В данной курсовой работе по дисциплине «Физические основы нано- и микроэлектроники» предусматривается: расчет диффузионного электронно-дырочного перехода с помощью решения уравнений Фика применительно к стандартным технологическим условиям диффузии из газового источника с постоянной концентрацией на поверхности с последующей разгонкой до требуемой глубины залегания перехода. Ответы на теоретические вопросы задания рассмотрены в теоретической части курсовой работы. Теоретическая часть
Диффузия примесных атомов в полупроводниках
Процесс диффузии представляет собой обусловленное тепловым движением перемещение атомов в направлении убывания их концентрации. Таким образом, движущей силой диффузии является градиент концентрации атомов. Диффузия примесей в полупроводник является базовым технологическим процессом и широко применяется при изготовлении диффузионных p/n-переходов. С практической точки зрения важно знать глубину залегания p/n-перехода, которая, в частности, определяется временем диффузии. При условии поддержания постоянной поверхностной концентрации имеем случай диффузии из "неограниченного источника" в "полуограниченное тело". Т.е. считаем, что толщина слоя диффузии много меньше толщины кристаллической подложки. Диффузия из бесконечного источника обычно является первой стадией диффузии – загонкой. Загонка обычно проводится при высокой температуре, когда коэффициент диффузии и растворимость максимальны. Вторая стадия диффузии – разгонка проводится при более низкой температуре, при которой собственно и формируется окончательный диффузионный профиль. Разгонка проводится при окисленной поверхности полупроводника, что позволяет считать, что процесс диффузии идет в полуограниченном теле с отражающей границей из источника с ограниченным количеством примеси Q0. Способ двухступенчатой диффузии из источника с ограниченным количеством примеси осуществляют следующим образом: в тонком приповерхностном слое полупроводниковой пластины создают избыточную концентрацию примеси с помощью загонки из бесконечного источника, затем поверхность пластины покрывают материалом со значительно меньшим, чем у полупроводника, коэффициентом диффузии, например окислом, и подвергают нагреву, во время которого происходит диффузия примеси вглубь пластины (разгонка), а на поверхности пластины поток примеси практически равен нулю.
Экспериментальные методы определения глубины залегания диффузионного р/n-перехода
1. Методы косого и сферического шлифа. Носят разрушающий характер, трудно применимы при малых глубинах залегания p-n-перехода. 2. Определение глубины залегания p-n-перехода в GaAs-элементах по максимуму спектральной чувствительности. В данной методике использовано предположение равенства диффузионных длин неосновных носителей заряда по обе стороны от p-n-перехода. 3. Для нахождения глубины залегания p-n-перехода возможно использование методики определения рекомбинационных параметров по исследованию спектральной зависимости токов короткого замыкания СЭ при освещении с фронтальной и тыльной сторон. 4. Известны неразрушающие методы измерения толщины эпитаксиальных слоев или глубины р - n перехода, основанные на интерференции инфракрасного излучения и эллипсометрии. Практическое применение этих высокоточных методов, к сожалению, ограничено относительно узким диапазоном измеряемых толщин и необходимостью использования дорогостоящего и сложного из- мерительного оборудования. В связи с этим основной целью выполненной работы являлось упрощение методики неразрушающего измерения глубины залегания р - n перехода, с одновременным расширением диапазона измеряемых толщин.
|