Аксиома параллельности.
V1. (Аксиома параллельности евклидовой геометрии). Пусть а – произвольная прямая, А – точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через А и не пересекающей прямую а. С помощью аксиомы параллельности евклидовой геометрии докажем утверждение, обратное к утверждению теоремы 4.2: Если даны две непересекающиеся прямые a и b, которые пересечены третьей, то соответственные углы будут равны между собой. Действительно, пусть прямые a и b пересечены прямой с. Предположим, что угол a между прямыми а и с не равен углу b между прямыми b и c (рис. 14). Проведем через точку В пересечения прямых b и c прямую b¢ так, чтобы она составляла с прямой с угол g, равный углу a (см. рис. 14). Тогда согласно теореме 4.2. прямые а и b¢ не пересекаются. Через точку В проходит две прямые, не пересекающие прямую а, что противоречит аксиоме V1. Еще раз отметим, что для доказательства этого утверждения необходима аксиома параллельности V1. Аксиомы пяти групп аксиоматики Гильберта позволяют доказать все утверждения, изложенные в школьных учебниках. Они служат основой для построения теории параллельных линий евклидовой геометрии, позволяют доказать теоремы о сумме углов треугольника и многоугольника, построить теорию подобия в евклидовой геометрии. Аксиома необходима для доказательства теоремы Пифагора, с помощью которой строится обычная тригонометрия, изучаемая в школе, а также декартова аналитическая геометрия на плоскости и в пространстве, позволяющая применить алгебраический аппарат к изучению геометрических свойств фигур на плоскости и тел в пространстве. Используя аксиомы пяти групп, вводится понятие площади многоугольника на плоскости и объема многогранника в пространстве. Исследование аксиоматики Гильберта мы проведем позже, используя при этом аксиоматику Вейля трехмерного евклидова пространства.
|