Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аксиома параллельности.





V1. (Аксиома параллельности евклидовой геометрии). Пусть а – произвольная прямая, А – точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через А и не пересекающей прямую а.

С помощью аксиомы параллельности евклидовой геометрии докажем утверждение, обратное к утверждению теоремы 4.2:

Если даны две непересекающиеся прямые a и b, которые пересечены третьей, то соответственные углы будут равны между собой.

Действительно, пусть прямые a и b пересечены прямой с. Предположим, что угол a между прямыми а и с не равен углу b между прямыми b и c (рис. 14). Проведем через точку В пересечения прямых b и c прямую b¢ так, чтобы она составляла с прямой с угол g, равный углу a (см. рис. 14). Тогда согласно теореме 4.2. прямые а и b¢ не пересекаются. Через точку В проходит две прямые, не пересекающие прямую а, что противоречит аксиоме V1.

Еще раз отметим, что для доказательства этого утверждения необходима аксиома параллельности V1.

Аксиомы пяти групп аксиоматики Гильберта позволяют доказать все утверждения, изложенные в школьных учебниках. Они служат основой для построения теории параллельных линий евклидовой геометрии, позволяют доказать теоремы о сумме углов треугольника и многоугольника, построить теорию подобия в евклидовой геометрии. Аксиома необходима для доказательства теоремы Пифагора, с помощью которой строится обычная тригонометрия, изучаемая в школе, а также декартова аналитическая геометрия на плоскости и в пространстве, позволяющая применить алгебраический аппарат к изучению геометрических свойств фигур на плоскости и тел в пространстве. Используя аксиомы пяти групп, вводится понятие площади многоугольника на плоскости и объема многогранника в пространстве.

Исследование аксиоматики Гильберта мы проведем позже, используя при этом аксиоматику Вейля трехмерного евклидова пространства.

 







Дата добавления: 2015-09-15; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия