Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аксиома параллельности.





V1. (Аксиома параллельности евклидовой геометрии). Пусть а – произвольная прямая, А – точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует не более одной прямой, проходящей через А и не пересекающей прямую а.

С помощью аксиомы параллельности евклидовой геометрии докажем утверждение, обратное к утверждению теоремы 4.2:

Если даны две непересекающиеся прямые a и b, которые пересечены третьей, то соответственные углы будут равны между собой.

Действительно, пусть прямые a и b пересечены прямой с. Предположим, что угол a между прямыми а и с не равен углу b между прямыми b и c (рис. 14). Проведем через точку В пересечения прямых b и c прямую b¢ так, чтобы она составляла с прямой с угол g, равный углу a (см. рис. 14). Тогда согласно теореме 4.2. прямые а и b¢ не пересекаются. Через точку В проходит две прямые, не пересекающие прямую а, что противоречит аксиоме V1.

Еще раз отметим, что для доказательства этого утверждения необходима аксиома параллельности V1.

Аксиомы пяти групп аксиоматики Гильберта позволяют доказать все утверждения, изложенные в школьных учебниках. Они служат основой для построения теории параллельных линий евклидовой геометрии, позволяют доказать теоремы о сумме углов треугольника и многоугольника, построить теорию подобия в евклидовой геометрии. Аксиома необходима для доказательства теоремы Пифагора, с помощью которой строится обычная тригонометрия, изучаемая в школе, а также декартова аналитическая геометрия на плоскости и в пространстве, позволяющая применить алгебраический аппарат к изучению геометрических свойств фигур на плоскости и тел в пространстве. Используя аксиомы пяти групп, вводится понятие площади многоугольника на плоскости и объема многогранника в пространстве.

Исследование аксиоматики Гильберта мы проведем позже, используя при этом аксиоматику Вейля трехмерного евклидова пространства.

 







Дата добавления: 2015-09-15; просмотров: 531. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия