Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство





Необходимость. (Þ) Покажем, что если U t 1 = U t 2, то образцы t 1 и t 2 совпадают с точностью до переименования переменных.

Пусть U t 1 = U t 2. Без ограничения общности можно считать, что множества символов переменных в образцах t 1 и t 2 не пересекаются.

Длины слов t 1 и t 2 совпадают. Действительно, всякое применение произвольного образца, получаемое заменой символов переменных на слова, состоящие из одного символа, имеет длину, равную длине самого образца. Поэтому если бы длины образцов t 1 и t 2 были разными, то множество применений более короткого образца содержало бы слова, не входящие во множество применений другого образца.

Пусть t 1 = s1,..., s k и t 2 = d1,..., d k.

Произведем последовательное посимвольное сравнение t 1 и t 2слева направо.

При этом возможны следующие случаи:

1) s i Î (А B);

2) s i Î V.

 

Рассмотрим первый из этих случаев и покажем, что справедливы соотношения d i Î (А B)и s i = d i.

Для этого рассмотрим множества всех таких применений t 1 и t 2, которые получаются из t 1 и t 2 заменой символов переменных на слова длины 1.

Тогда, если d i s i, то рассматриваемые множества кратчайших по длине слов в U t 1 и U t 2 являются разными, так как i -й символ всех слов первого множества равен s i. Однако значения i -го символа слов второго множества могут быть отличными от s i.

Из проведенных рассуждений следует, что на одинаковых позициях образцов t 1 и t 2 могут располагаться либо символы переменных, либо равные символы из А B.

 

Рассмотрим второй случай. Покажем, что в этом случае d i также является символом переменной и s i = s j тогда и только тогда, когда d i = d j. Первое из приведенных свойств верно, поскольку если d i Î А B, то в кратчайших применениях t 2 символ с порядковым номером i всегда равен d i, а в кратчайших применениях t 1 символ с тем же номером принимает значения всех символов из А B.

Проверим справедливость второго свойства. Пусть s i Î V и s j, j < i,обозначают одну и ту же переменную в t 1. Тогда все применения t 1, получаемые заменой переменных на слова длины 1 в алфавите А È B, имеют одинаковые j -й и i -й символы. Если же d i и d j - разные символы переменных в t 2, то среди кратчайших по длине применений образца t 1 имеются такие, в которых j -й и i -й символы - разные. Поэтому U t 1 ¹ U t 2. Последнее заключение противоречит предполагаемому равенству множеств U t 1 и U t 2.

Доказательство того, что если d i = d j, то s i = s j можно провести аналогичными рассуждениями.

Из доказательства свойств, имеющих место в случаях 1 и 2, следует, что t 1 и t 1 совпадают с точностью до переименования переменных.

Достаточность. (Ü) Пусть образцы t 1 и t 2 совпадают с точностью до переименования переменных. Тогда множества применений этих образцов совпадают.

Действительно, пусть подстановка Q 1 = задает переименование переменных из t 1 в переменные из t 2, которое преобразует t 1 в t 2.

Тогда, если слово является применением t 1, получаемым с помощью подстановки p, то является применением t 2 с помощью подстановки QQ 1, т.е. U t 1 Í U t 2. Обратное включение U t 1 Í U t 2 доказывается аналогично. Поэтому U t 1 = U t 2.

Следовательно, U t 1 = U t 2.







Дата добавления: 2015-09-18; просмотров: 302. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия