Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство





Необходимость. (Þ) Покажем, что если U t 1 = U t 2, то образцы t 1 и t 2 совпадают с точностью до переименования переменных.

Пусть U t 1 = U t 2. Без ограничения общности можно считать, что множества символов переменных в образцах t 1 и t 2 не пересекаются.

Длины слов t 1 и t 2 совпадают. Действительно, всякое применение произвольного образца, получаемое заменой символов переменных на слова, состоящие из одного символа, имеет длину, равную длине самого образца. Поэтому если бы длины образцов t 1 и t 2 были разными, то множество применений более короткого образца содержало бы слова, не входящие во множество применений другого образца.

Пусть t 1 = s1,..., s k и t 2 = d1,..., d k.

Произведем последовательное посимвольное сравнение t 1 и t 2слева направо.

При этом возможны следующие случаи:

1) s i Î (А B);

2) s i Î V.

 

Рассмотрим первый из этих случаев и покажем, что справедливы соотношения d i Î (А B)и s i = d i.

Для этого рассмотрим множества всех таких применений t 1 и t 2, которые получаются из t 1 и t 2 заменой символов переменных на слова длины 1.

Тогда, если d i s i, то рассматриваемые множества кратчайших по длине слов в U t 1 и U t 2 являются разными, так как i -й символ всех слов первого множества равен s i. Однако значения i -го символа слов второго множества могут быть отличными от s i.

Из проведенных рассуждений следует, что на одинаковых позициях образцов t 1 и t 2 могут располагаться либо символы переменных, либо равные символы из А B.

 

Рассмотрим второй случай. Покажем, что в этом случае d i также является символом переменной и s i = s j тогда и только тогда, когда d i = d j. Первое из приведенных свойств верно, поскольку если d i Î А B, то в кратчайших применениях t 2 символ с порядковым номером i всегда равен d i, а в кратчайших применениях t 1 символ с тем же номером принимает значения всех символов из А B.

Проверим справедливость второго свойства. Пусть s i Î V и s j, j < i,обозначают одну и ту же переменную в t 1. Тогда все применения t 1, получаемые заменой переменных на слова длины 1 в алфавите А È B, имеют одинаковые j -й и i -й символы. Если же d i и d j - разные символы переменных в t 2, то среди кратчайших по длине применений образца t 1 имеются такие, в которых j -й и i -й символы - разные. Поэтому U t 1 ¹ U t 2. Последнее заключение противоречит предполагаемому равенству множеств U t 1 и U t 2.

Доказательство того, что если d i = d j, то s i = s j можно провести аналогичными рассуждениями.

Из доказательства свойств, имеющих место в случаях 1 и 2, следует, что t 1 и t 1 совпадают с точностью до переименования переменных.

Достаточность. (Ü) Пусть образцы t 1 и t 2 совпадают с точностью до переименования переменных. Тогда множества применений этих образцов совпадают.

Действительно, пусть подстановка Q 1 = задает переименование переменных из t 1 в переменные из t 2, которое преобразует t 1 в t 2.

Тогда, если слово является применением t 1, получаемым с помощью подстановки p, то является применением t 2 с помощью подстановки QQ 1, т.е. U t 1 Í U t 2. Обратное включение U t 1 Í U t 2 доказывается аналогично. Поэтому U t 1 = U t 2.

Следовательно, U t 1 = U t 2.







Дата добавления: 2015-09-18; просмотров: 302. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия