Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие сведения из теории пределов функции





Число А называют пределом функции f (x) при (и пишут ), если для любого найдется число зависящее от e, такое, что для всех , удовлетворяющих условию , выполняется неравенство

Функция a(x) называется бесконечно малой (б.м.ф.) при ( если

Функция f (x) называется бесконечно большой (б.б.ф.) при , ( если для любого M >0 найдётся число зависящее от М, такое, что для всех , удовлетворяющих условию , будет верно неравенство

Если a(x) есть б. м.ф. при (или то функция

является б. б., и обратно, если f (x) б.б.ф. при , то является б.м.ф.

Если и б.м.ф. при (), то чтобы сравнить их, нужно вычислить предел их отношения. Пусть Тогда:

при называется б.м. более высокого порядка малости, чем ;

при и одного порядка малости;

при более низкого порядка малости, чем .

Если , то б.м.ф. и называются эквивалентными:

Предел отношения двух б.м.ф. не изменится, если каждую б.м.ф. заменить на эквивалентную.

Примеры эквивалентных б.м.ф. при

Теоремы о пределах:

1. (c =const).

2. Если то:

Первый замечательный предел:

Второй замечательный предел (число е = 2,718…):

или

Чтобы найти предел элементарной функции нужно предельное значение аргумента подставить в функцию и посчитать. При этом, если х = х 0 принадлежит области определения функции, то значение предела будет найдено, оно равно значению функции в точке х = х 0. При вычислении пределов полезно использовать следующие соотношения. Если то, учитывая свойства б.б. и б.м. функций, получим:

если если a >1.

Случаи, в которых подстановка предельного значения аргумента
в функцию не дает значения предела, называют неопределенностями;
к ним относятся неопределенности видов:

Устранить неопределенность можно с помощью алгебраических преобразований или используя правило Лопиталя.

Правило Лопиталя. Предел отношения двух б.м. или б.б. функций равен пределу отношения их производных (конечному или бесконечному), если последний существует:

(5)

Чтобы использовать правило Лопиталя для раскрытия неопределённостей других типов, выражение под знаком предела следует преобразовать элементарными способами так, чтобы получить неопределенность или и затем использовать формулу (5).

Задание 7. Найти пределы, используя правило Лопиталя или элементарные способы раскрытия неопределённостей:

при а) б)

Решение.

а)

б) Подставляя в функцию вместо х предельное значение , определим предел числителя и знаменателя.

т. к.

Аналогично:

Имеем неопределенность вида . Используем правило Лопиталя:

Замечание. Если, применив правило Лопиталя, снова получили неопределенность или , то снова применяем правило до тех пор, пока неопределённость не будет раскрыта.

 







Дата добавления: 2015-09-18; просмотров: 682. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия