Электропривод (выбор мощности двигателя)
Выбор двигателя – один из ответственных этапов проектирования электропривода, так как именно двигатель в значительной степени определяет технические и экономические качества привода в целом. Из многочисленных типов двигателя переменного и постоянного токов для привода той или иной производственной машины должен быть выбран такой, который наиболее полно удовлетворял бы технико-экономическим требованиям. Это значит, что двигатель должен быть наиболее простым по управлению, надежным в эксплуатации и иметь наименьшую стоимость, массу и габариты, а также высокие энергетические показатели. В сравнении со всеми существующими типами двигателей этим требованиям в наибольшей мере отвечают асинхронные двигатели с короткозамкнутым ротором. При выборе двигателя такого типа необходимо выяснить, удовлетворяются ли технические требования: допустимое уменьшение скорости при увеличении нагрузки, допустимая величина повторных включений, возможность быстрого и надежного пуска. В напряженных режима работы привода, с большой частотой включений, где требуется повышенный или ограниченный пусковой момент, а также регулирование частоты вращения в узких пределах, применяют асинхронные двигатели с контактными кольцами. Для нерегулируемых приводов средней и большой мощности, работающих в продолжительном режиме с редкими пусками, рекомендуется применять синхронные двигатели. Они отличаются более высоким к.п.д. и допускают регулирование коэффициента мощности за счет компенсации реактивной мощности. При необходимости плавного и глубокого регулирования скорости, а также при большой частоте включений применяются двигатели постоянного тока. При выборе мощности двигателя основными исходными данными являются требуемые моменты, которые должны быть приложены к валу механизма, т.е. необходимо иметь нагрузочные диаграммы электропривода P=f(t) или М=f(t), которые могут быть заданы как в виде графика, так и в виде таблицы. Пример решения задачи по теме 4. Определить необходимую мощность двигателя для привода механизма, режим работы которого задан нагрузочной диаграммой на рис.9. По технологическим условиям следует использовать асинхронный двигатель с короткозамкнутым ротором. Двигатель должен развивать частоту вращения n=980 об/мин. Помещение, где будет установлен двигатель,- сухое, без пыли и грязи. Рис. 9. Нагрузочная диаграмма
Решение. В нашем случае режим работы представляет собой длительную переменную нагрузку. Мощность двигателя подбирается при подобных режимах работы по эквивалентной мощности, которая равна где tц - время цикла работы: tц=t1+t2+t3=20+30+15=65 c; кВт По данным каталога в качестве приводного двигателя может быть использован асинхронный короткозамкнутый двигатель в защищенном исполнении типа А2-61-6; 380/220 В; Pн=10 кВт, nн=965 об/мин, hн =0,870, Мп/Мн=1,2, Мм/Мн=1,8. В ряде случаев момент нагрузки на отдельных участках может оказаться больше максимально допустимого момента двигателя, и асинхронный двигатель может остановиться. Поэтому после выбора двигателя его необходимо проверить по перегрузочной способности исходя из условия Ммакс<Ммакс.д, где Ммакс- максимальный момент на валу двигателя; Ммакс.д - максимально допустимый момент двигателя. Для асинхронного двигателя Ммакс.д=0,9·Мк. Здесь Мк- критический (максимальный) момент двигателя. В нашем примере: номинальный момент двигателя Мн=9550Pн/nн=9550·10/965=99 Н·м; Максимальный (критический) момент Мк=l Мн=1,8·99=178 Нм; Максимальный статический момент Мс=9550·P1/n=9550·12/980=117 Н·м. По перегрузочной способности двигатель проходит, так как выполняется условие 0,9·Мк=0,9·178=160>Мс=117.
КОНТРОЛЬНЫЕ ЗАДАЧИ Задача №1. Для трехфазного трансформатора, обмотки которого соединены “звездой”, а значения номинальной мощности, номинальных напряжений, напряжения короткого замыкания, мощности короткого замыкания, мощности холостого хода и отношения тока холостого хода к номинальному току первичной обмотки приведены в таблице 3, определить: номинальный ток первичной обмотки; ток холостого хода; коэффициент мощности в режиме холостого хода; угол магнитных потерь; сопротивления короткого замыкания; сопротивления первичной и вторичной обмоток и сопротивления намагничивающей цепи.Построить внешнюю характеристику и векторную диаграмму при нагрузке, составляющей b=0,75 от номинальной мощности трансформатора, и cos j2 = 0,8. Составить Т – образную схему замещения. Задача №2. Трехфазный асинхронный двигатель с короткозамкнутым ротором, номинальное число оборотов ротора которого nн=1420 об/мин, а номинальные напряжение, мощность, к.п.д., коэффициент мощности, кратность пускового тока и перегрузочная способность приведены в таблице 4, включен в сеть с частотой f=50 Гц. Определить: номинальный и пусковой токи, номинальный, пусковой и максимальны моменты. Построить механические характеристики. Задача №3. Для двигателя параллельного возбуждения, сведения о напряжении сети, потребляемом при номинальной нагрузке и холостом ходу токе, сопротивлениях обмотки якоря и цепи возбуждения, а также номинальной скорости вращения приведены в таблице 5, определить номинальную мощность двигателя (на валу), номинальный к.п.д., номинальный вращающий момент, пусковой ток при пуске двигателя без пускового реостата, сопротивление пускового реостата для условия Iп=2,5I и пусковой момент при пуске двигателя с реостатом. При решении принять, что магнитные и механические потери не зависят от нагрузки. Задача №4. Для заданного в табл.6 режима нагрузки производственного механизма построить нагрузочную диаграмму и выбрать мощность асинхронного короткозамкнутого двигателя. Литература
1. Брускин Д.Э. и др. Электрические машины: В 2-х ч.Ч.1 /. Д.Э.Брускин, А.Е.Зорохович, В.С.Хвостов.- М.: Высш. шк., 1987.- - 319 с., (раздел 3). 2. Брускин Д.Э. и др. Электрические машины: В 2-х ч.Ч.2 /. Д.Э.Брускин, А.Е.Зорохович, В.С.Хвостов.- М.: Высш. шк., 1987.- - 335 с., (раздел 4). 3. Баширин А.,В., Новиков В.А., Соколовский Г.Г. Управление электроприводами: Учебное пособие для вузов.-Л.: Энергоатомиздат, 1982.- 392 с., (раздел 4). 4. Чиликин М.Г., Сандлер А.С. Общий курс электропривода: Учебник для вузов.- М.: Энергоатомиздат, 1981 – 576 с., (раздел 4). 5. Копылов И.П. Математическое моделирование электрических машин: Учебн. для вузов. - М.: Высш. шк., 1987. - 248 с., (разделы 1,2). 6. Домбровский В.В., Зайчик В.М. Асинхронные машины. Теория, расчет, элементы проектирования.-Л.: Энергоатомиздат. 1990.- 358 с., (раздел 3).
Приложения Таблица 3 Данные к задаче 1 Таблица 3
Таблица 4
Таблица 5
Таблица 6
|