Математическое сопровождение к описанию критерияφ* Фишера
Угловое преобразование позволяет перевести процентные доли, которые сами по себе имеют распределение, далекое от нормального, в величину φ, распределение которой близко к нормальному (Гублер Е.В., 1978, с. 84). Это дает определенные преимущества в том случае, если мы хотим использовать параметрические критерии, требующие нормальности распределений. Как видно из графика на Рис. 5.1, φ нарастает в общем пропорционально процентной доле, но при этом на крайних значениях φ кривая характеризуется большей крутизной. Благодаря этому для малых долей (меньше 20%) и больших долей (больше 80%) определение достоверности разности долей по соответствующим углам φ дает более правильные результаты, а для долей в пределах от 20 до 80% замена их углами φ дает такие же результаты, какие получаются и без этой замены, но техника вычислений при этом упрощается (Плохинский Н.А., 1970, с. 143). Углы φ измеряются в радианах. Радиан - это угол, являющийся центральным для дуги, длина которой равна радиусу окружности (Рис. 5.5). 1 радиан равен 57°17'44". Величина φ определяется по формуле: где Р - доля, выраженная в долях единицы; arcsin - обратная синусу тригонометрическая функция. Иными словами, синус угла φ/2 равен корню квадратному из Р. Напомним, что sinφ=а/с (см. Рис. 5.6), a arcsin а/с= φ Величину φ можно вычислить в радианах или определить по специальной таблице (Табл. XII Приложения 1). Н.А. Плохинский использует иную формулу определения ф: где φ1 - значение угла для первой доли; φ2- значение угла для второй доли; n1 - количество наблюдений в первой выборке; n2 - количество наблюдений во второй выборке. Эмпирические значения Fd сопоставляются с критическими значениями критерия F Фишера, которые определяются по таблице для степеней свободы v1 и v2, определяемых как: По нашему опыту, этот вариант критерия с использованием углового преобразования дает менее точные результаты, чем вариант Е.В. Гублера (1978).
|