Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания к контрольной работе №3.





Задачи 310-319. Исследовать сходимость числового ряда.

 

310. a) b)

311. a) b)

312. a) b)

313. a) b)

314. a) b)

315. a) b)

316. a) b)

317. a) b)

318. a) b)

319. a) b)

 

 

Задачи 320-329. Найти интервал сходимости степенного ряда.

 

320. a) b)

321. a) b)

322. a) b)

323. a) b)

324. a) b)

325. a) b)

326. a) b)

327. a) b)

328. a) b)

329. a) b)

 

Задачи 330-339. Вычислить приближенное значение функции f(х) в заданной точке, разложив ее в степенной ряд с точностью до четырех значимых слагаемых. Указать точность оценки.

 

330. 331.

332. 333.

334. 335.

336. 337.

338. 339.

 

Задачи 340-349. Вычислить приближенное значение определенного интеграла разложив подинтегральную функцию в степенной ряд с точностью до четырех значимых слагаемых и затем проинтегрировав его.

 

340. 341.

342. 343.

344. 345.

346. 347.

348. 349.

 

 

Задачи 350-359. Разложить данную функцию ¦(х) в ряд Фурье в интервале

(а; в):

 

350. ¦(х) = 2х + 1 в интервале (-1,1)

 

351. ¦(х) = х + 4 в интервале (-2p,2p)

 

352. ¦(х) = х - 1 в интервале (0,2p)

 

353. ¦(х) = 3 + х в интервале (-2p,2p)

 

354. ¦(х) = -4 - 5х в интервале (-1,1)

 

355. ¦(х) = 1 - 2х в интервале (-2,2)

 

356. ¦(х) = х + 6 в интервале (-2p,2p)

 

357. ¦(х) = х - 3 в интервале (0,2p)

 

358. ¦(х) = 3 - 4х в интервале (-2,2)

 

359. ¦(х) = 2х + 3 в интервале (-2p,2p)

 

 


Контрольная работа №5 (2 курс 1 семестр)

«Дифференциальные уравнения»

Тематический план

 

1. Дифференциальное уравнение и его порядок. Задача Коши. Общее и частное решение, общий и частный интеграл.

2. Дифференциальные уравнения с разделяющимися переменными.

3. Однородные дифференциальные уравнения первого порядка.

4. Линейные дифференциальные уравнения первого порядка.

5. Интегрирование некоторых дифференциальных уравнений второго порядка путем понижения порядка уравнения.

6. Структура общего решения линейного дифференциального уравнения второго порядка без правой части.

7. Интегрирование линейных дифференциальных уравнений с постоянными коэффициентами и без правой части. Характеристическое уравнение.

8. Структура общего решения линейного дифференциального уравнения с правой частью.

9. Интегрирование линейных дифференциальных уравнений с постоянными коэффициентами и с правой частью специального вида.

10. Отыскание частного решения линейного дифференциального уравнения с постоянными коэффициентами и с правой частью специального вида.

11. Преобразование Лапласа.

12. Свойства преобразования Лапласа.

13. Изображения простейших оригиналов.

14. Основные теоремы операционного исчисления.

15. Изображение производных.

16. Теорема разложения в операционном исчислении.

17. Интегрирование дифференциальных уравнений операторным методом.

 








Дата добавления: 2015-09-18; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия