Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение погрешностей при прямых измерениях





 

Пусть в результате измерения физической величины N получен ряд значений N , N , N ,.…, N , где n - число отдельных измерений. Среднее арифметическое этих результатов, т.е.

 

(1)

 

есть величина, называемая средним значением величины N, которая наиболее близка к истинному значению.

Отсюда следует, что каждое измерение должно быть повторено несколько раз.

Разности , , , …, между средним значением измеряемой величины и значением , , , …, , полученным при отдельных измерениях, т.е.

……………..

называются абсолютными ошибками или погрешностями отдельных измерений и могут быть положительными и отрицательными.

Для определения средней абсолютной погрешности результата берут среднее арифметическое абсолютных значений (модулей) отдельных ошибок:

 

Отношения называются относительными погрешностями отдельных измерений.

Отношение средней абсолютной погрешности результата к его среднему значению дает среднюю относительную погрешность результата измерений:

Относительные ошибки принято выражать в процентах

Истинное значение

N = N

Не следует думать, что величина Nист имеет два значения Nср - и Nср+ . Nист имеет только одно значение, а знак «+» или «–» показывает, что истинное значение измеряемой величины находится в интервале

Nср - Nср Nист Nср + .

 

Теория вероятностей дает более точную формулу для вычисления абсолютной ошибки результата, устанавливая понятие так называемой наиболее вероятной ошибки результата :

 

 

= ± 0, 6745

 

В этом случае окончательное значение измеряемой величины

 

Nист = Nср

 

Если точность прибора такова, что при любом числе измерений получается одно и тоже число, лежащее где-то между делениями шкалы, то приведенный метод оценки погрешности неприменим. В этом случае измерение производится один раз и результат измерений записывается так:

,

где - искомый результат измерений;

- средний результат, равный среднему арифметическому из двух значений, соответствующих соседним делениям шкалы, между которыми заключено остающееся неизвестным истинное значение измеряемой величины;

- предельная погрешность, равная половине цены деления шкалы прибора.

Часто в работах даются значения некоторых величин, измеренных заранее. В таких случаях абсолютную погрешность принимают равной ее предельной величине, т.е. равной половине единицы наименьшего разряда, представленного в числе. Например, если дана масса тела m=532,4 г, то m=0.05 г, следовательно m = 532.4 г 0.05 г..

 







Дата добавления: 2015-09-18; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия