Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отыскание точки пересечения прямой линии с прямой пирамидой и с прямым круговым конусом с помощью средств AutoCAD





 

Цель: найти точку пересечения прямой линии с пирамидой с помощью проецирующей вспомогательной плоскости.

 

Контрольные вопросы:

 

1. Какой должна быть вспомогательная секущая плоскость, используемая при решении поставленной задачи, что бы облегчить решение задачи?

2. Сформулируйте общий принцип решения задачи пересечения поверхностей с прямой линией.

Задание 1: найти точки пересечения прямой а с прямой семигранной пирамидой; объекты заданы проекциями на горизонтальную и фронтальную плоскость (варианты заданий приведены в приложении Д).

 

Решим задачу с помощью вспомогательной секущей плоскости Ф, которую проведем через прямую а. Решение задачи упрощается, если плоскость будет проецирующей. Применим фронтально-проецирующую плоскость, совместим ее фронтальный след с фронтальной проекцией прямой a (рис. 8.1). Найдем горизонтальную проекцию сечения пирамиды этой плоскостью, сделаем это так же, как в лабораторной работе № 5 (рис. 8.2).

Рисунок 8.1 – Проекции пирамиды и прямой общего положения Рисунок 8.2 – Горизонтальная проекция сечения

 

Найдем горизонтальные, а затем, по соответствию, фронтальные проекции точек пересечения прямой с сечением, это и будут точки пересечения прямой и пирамиды (рис. 8.3). Трехмерная модель отыскания точек пересечения приведена на рисунке 8.4.

Рисунок 8.3 – Проекции точек пересечения прямой и пирамиды

Рисунок 8.4 – Трехмерная модель отыскания точек пересечения


Задание 2: найти точки пересечения прямой линии с прямым круговым конусом; объекты заданы проекциями на горизонтальную и фронтальную плоскость (варианты заданий приведены в приложении Д).

 

Исходные данные приведены на рисунке 8.5. Для решения задачи применим вспомогательную секущую плоскость, которую проведем через вершину конуса и две точки на прямой. Такая плоскость пересекает конус по образующим, заданная прямая лежит в плоскости. Зададим две точки на прямой a (рис. 8.6).

Рисунок 8.5 – Проекции конуса и прямая a Рисунок 8.6 – Задание точек на прямой

 

Построим секущую плоскость:

- при помощи команды LINE, проведем две прямые через вершину конуса и точки 12 и 22; эти две прямые определяют фронтальную проекцию секущей плоскости, таким же образом построим горизонтальные проекции этих прямых (рис. 8.7);

- с помощью команды EXTEND найдем фронтальные проекции точек пересечения прямых S1 и S2 с плоскостью основания конуса – М2 и N2 (рис. 8.8);

- найдем горизонтальные проекции этих точек, это удобно с помощью команды FILLET, которая может быть применена для продления отрезков до точки пересечения (рис. 8.9).

Прямая M1N1 – след секущей плоскости на плоскости основания конуса, построив ее можно найти точки пересечения следа плоскости с основанием конуса – А1 и В1 (рис. 8.10).

Рисунок 8.7 – Построение прямых S1 и S2 Рисунок 8.8 – Отыскание точек М2 и N2
Рисунок 8.9 – Отыскание точек М1 и N1 Рисунок 8.10 – Построение отрезка M1N1

Теперь можно построить горизонтальные проекции образующих, являющихся сечением конуса плоскостью 1S2 – A1S1 и B1S1 (рис 8.11).

Эти образующие и исходная прямая лежат в секущей плоскости, поэтому, точки их пересечения (если они существуют) являются точками пересечения прямой и конуса. Найдем горизонтальные проекции этих точек - М2 и N2, и, по соответствию их фронтальные проекции - М2 и N2 (рис. 8.12).

Трехмерная модель отыскания точек пересечения приведена на рисунке 8.13.

 

Рисунок 8.11 – Построение отрезков A1S1 и B1S1 Рисунок 8.12 – Отыскание точек пересечения прямой и конуса

 

Рисунок 8.13 – Трехмерная модель отыскания точек пересечения

Приложение А

Варианты заданий к лабораторной работе № 1

 

 

 

 

 

 

 

 

 

ПРИЛОЖЕНИЕ Б

 

Варианты заданий к лабораторным работам № 2-4

 

А В С Д
  40,5,55 0,50,10 65,20,0 70,65,60
  20,10,20 75,20,50 90,85,0 30,50,45
  85,20,80 25,40,20 90,90,30 70,10,10
  85,42,0 25,62,20 0,10,40 35,35,58
  10,20,25 55,50,10 80,0,65 40,50,45
  65,25,70 0,40,40 90,90,15 15,70,100
  40,70,5 0,30,30 65,25,65 20,80,65
  42,72,0 0,32,33 75,40,55 15,65,60
  55,0,30 0,10,60 5,55,15 35,35,50
  45,55,10 0,25,35 60,10,60 80,30,35
  45,0,60 80,45,15 15,10,10 10,60,55
  0,65,0 15,20,50 70,10,20 60,50,45
  25,30,50 65,50,10 10,60,40 0,30,15
  88,50,10 62,0,60 20,0,30 28,34,50
  0,50,10 25,0,60 70,5,30 60,35,70
  105,0,95 80,75,30 0,30,15 15,70,100
  40,65,20 0,10,60 55,20,40 65,15,30
  70,20,10 25,50,30 0,10,50 60,40,45
  0,15,40 60,60,75 85,45,10 50,5,45
  35,70,0 60,40,20 20,25,45 70,85,50
  25,5,70 65,30,30 0,45,25 45,65,80
  25,15,60 65,50,15 0,80,10 50,75,50
  70,25,5 15,55,35 20,5,50 50,75,40
  15,70,0 60,40,20 0,25,45 0,45,10
  30,55,5 75,10,50 5,0,20 0,35,65
  0,10,55 15,60,10 70,30,15 60,55,40
  25,30,30 65,10,50 10,20,90 0,55,45
  85,0,65 60,65,10 0,30,20 50,35,10
  70,5,65 10,20,30 50,50,20 20,65,10
  50,5,70 10,30,30 75,40,20 20,65,75

 

ПРИЛОЖЕНИЕ В

Варианты заданий к лабораторным работам № 5-7

 

Призма и пирамида Конус и цилиндр Центр основания Высота Плоскость сечения
Основание (фигура) Длина сторон(ы) Радиус основания Угол наклона плоскости к оси х Координата пересечения плоскости с осью х
  Правильный шестиугольник     (0,45,10)      
  ромб     (20,50,10)      
  Равносторонний треугольник     (15,40,20)      
  Правильный пятиугольник     (10,45,20)      
  Прямоугольник 40,15   (0,40,25)      
  Параллелограмм 20,30, угол=40°   (0,55,20)      
  Равносторонний треугольник     (15,30,30)      
  Квадрат     (15,30,15)      
  Правильный пятиугольник     (15,80,30)      
  Прямоугольник 24,25   (5,50,40)      
  Ромб     (10,45,10)      
  Равносторонний треугольник     (15,50,10)      
  Правильный пятиугольник     (45,70,30)      
  Прямоугольник 25,35   (10,30,10)      
  Параллелограмм 20,45, угол=35°   (15,60,30)      
  Прямоугольный треугольник катеты=25,18   (35,30,10)      
  Квадрат     (25,20,20)      
  Ромб     (30,30,30)      
  Правильный шестиугольник     (10,25,40)      

 

  Равносторонний треугольник     (5,40,10)      
  Правильный пятиугольник     (20,50,20)      
  Прямоугольник 24,15   (15,10,20)      
  Параллелограмм 23,34, угол=20°   (10,15,30)      
  Прямоугольный треугольник катеты=20,30   (30,30,10)      
  Квадрат     (30,35,10)      
  Прямоугольник 21,26   (5,40,20)      
  Ромб     (35,30,20)      
  Равносторонний треугольник     (5,30,25)      

 

 

ПРИЛОЖЕНИЕ Д

Варианты заданий к лабораторной работе № 8

Пирамида Конус Центр основания Высота Пересекащая прямая
Основание (Фигура) Длина сторон(ы) Радиус основания Начальная коорд. Конечная коорд.
  Правильный шестиугольник     (0,45,10)   (30,30,18) (-40,60,60)
  Ромб     (20,50,10)   (40,5,5) (0,65,55)
  Равносторонний треугольник     (25,40,20)   (50,45,15) (0,20,60)
  Правильный пятиугольник     (30,45,20)   (40,10,15) (10,50,60)
  Прямоугольник 40,15   (0,40,25)   (20,10,15) (0,50,60)
  Параллелограмм 20,30, угол=40°   (0,55,20)   (10,20,50) (-10,60,20)
  Равносторонний треугольник     (15,30,30)   (30,35,25) (10,5,60)
  Квадрат     (15,30,15)   (30,20,18) (-40,50,60)
  Правильный пятиугольник     (15,80,30)   (40,85,5) (0,5,55)
  Прямоугольник 24,25   (5,50,40)   (50,45,15) (0,20,60)
  Ромб     (10,45,10)   (40,10,15) (10,50,60)
  Равносторонний треугольник     (15,50,10)   (20,10,15) (0,50,60)
  Правильный пятиугольник     (45,70,30)   (10,20,50) (-10,60,20)
  Прямоугольник 25,35   (10,30,10)   (30,35,25) (10,5,50)
  Параллелограмм 20,45, угол=35°   (15,60,30)   (30,30,18) (-40,60,60)
  Прямоугольный треугольник катеты=25,18   (25,30,80)   (40,5,5) (0,65,55)
  Квадрат     (25,20,20)   (50,45,15) (0,10,45)
  Ромб     (30,30,30)   (40,10,15) (10,50,60)
  Правильный шестиугольник     (10,15,40)   (20,10,15) (0,50,60)
  Равносторонний треугольник     (5,40,10)   (10,20,50) (-10,60,20)

 

  Правильный пятиугольник     (20,50,20)   (30,35,25) (10,5,60)
  Прямоугольник 24,15   (15,10,20)   (40,10,15) (0,50,65)
  Параллелограмм 23,34, угол=20°   (10,15,30)   (30,30,18) (-40,60,60)
  Прямоугольный треугольник катеты=20,30   (30,30,10)   (40,5,5) (0,65,55)
  Квадрат     (30,35,10)   (50,45,15) (0,20,60)
  Прямоугольник 21,26   (5,40,20)   (40,10,15) (10,50,60)
  Ромб     (35,30,20)   (20,10,15) (0,50,60)
  Равносторонний треугольник     (5,30,25)   (10,20,50) (-10,60,20)
  Квадрат     (0,40,30)   (30,35,25) (10,5,60)
  Правильный пятиугольник     (35,50,10)   (45,20,5) (10,70,70)

 







Дата добавления: 2015-09-18; просмотров: 862. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия