Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Последовательность и ее предел





Пусть имеется правило, по которому каждому натуральному n ставится в соответствие вещественное число : . В этом случае говорят, что задана последовательность , ,… Коротко ее обозначают . При этом число называют nчленом, или общим членом, последовательности .

Примеры:

а) 1, 2, 3, 4, 5,… Здесь . Для нее . (Чтó это значит, мы определим позже).

б) – 1, – 2, –3,…, т.е. . Для нее .

в) –1, 2, – 3, 4, –5, 6,… Þ . Здесь (без знака!).

г) 1, , , , ,… Þ . Здесь (запомните!), точнее (стремится к нулю справа, оставаясь положительным).

д) (стремится к нулю слева).

е) – 1, , , , ,…Þ . Здесь (без знака).

ж) –1, 1, –1, 1, –1, 1,… . Эта последовательность никуда не стремится (хотя и ограничена).

з) , , , , ,… Þ , т.к.

, а .

Итак, , если «неограниченно приближается» к а с ростом n. Формальное определение таково: при n ® ¥, или, что то же самое, , если "e > 0 $ N = N (e) такое, что " n > N.

Другими словами, (), если для любой окрестности точки а найдется номер, начиная с которого все члены последовательности принадлежат этой окрестности (поясните эквивалентность определений).

УПРАЖНЕНИЕ.Докажите, что

а) при ; б) при , если .

 

Говорят, что последовательность монотонно возрастает (не убывает), если " n ( " n).

Говорят, что последовательность ограничена сверху, если
$ М > 0 такое, что " n.

Аналогично определяются монотонно убывающая (не возрастающая) последовательность и последовательность, ограниченная снизу.

ТЕОРЕМА. Монотонно возрастающая (или даже неубывающая) ограниченная сверху последовательность имеет конечный предел.

Другими словами, если для всех n и , то и .

Аналогичное утверждение справедливо и для монотонно убывающей (не возрастающей) ограниченной снизу последовательности (сформулируйте его).

6. Число е

Рассмотрим последовательность . Имеем:

, ,

,

и т.д. Можно показать, что " n и что " n. Следовательно, существует предел этой последовательности, обозначаемый е:

.

Это обозначение предложил Л. Эйлер (Euler, 1707–1783), великий математик, родившийся в Швейцарии и работавший в России.

Число е играет в математике не менее важную роль, чем p (в этом мы не раз убедимся). Приближенно оно равно 2,7. Более точное значение таково: е = 2,718281828… Год рождения Л. Толстого (1828) стоит здесь дважды подряд, но не является периодом, т.к. число е иррационально (дальнейшие цифры 4590…). Заметим также, что , в то время как показатель степени . Таким образом, есть «неопределенность» типа .

Если в этом пределе величину заменить нулем, то в пределе получим единицу, поскольку единица в любой степени есть единица. Если же заменить любой сколь угодно малой, но фиксированной положительной величиной, то в пределе получим + ¥. Более того, + ¥ мы получим и в том случае, когда заменим на величину , также стремящуюся к нулю, но медленнее, чем (либо заменим показатель степени n на быстрее растущую величину ). Заменив же величину на величину , быстрее стремящуюся к нулю (или показатель степени п на показатель ), мы получим в пределе 1. В этом предлагается убедиться самостоятельно или с помощью преподавателя на практических занятиях. Там же вы увидите, что неопределенность типа может давать и любые другие ответы между 1 и + ¥. С неопределенностями других типов мы еще не раз встретимся при вычислении пределов.

Функция называется экспонентой и обозначается exp(x).

Логарифм с основанием е называется натуральным логарифмом и обозначается ln x:

.

(Напомним, что , поскольку ).

 

ЛЕКЦИЯ 2. ФУНКЦИЯ, ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ







Дата добавления: 2015-09-18; просмотров: 329. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия