Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложная функция, или суперпозиция





Пусть даны три множества X, Y, Z и два отображения f: X ® Y и g: Y ® Z.

Тогда можно построить отображение из Х в Z по правилу z = g (f (x)) " х Î Х, т.е. элементу х отображение f сопоставляет элемент у = f (х), а элементу у отображение g сопоставляет элемент z = g (y) = g (f (x)). Тем самым определена функция F: X ® Z такая, что F (x) = g (f (x)) " х Î Х. Она обозначается и называется сложной функцией или суперпозицией отображений f и g.

Например, если y = x 2 = f (x), а z = sin y = g (y), то F (x) = g (f (x)) = sin x 2 – сложная функция, полученная как суперпозиция «квадрата» и синуса.

 

Обратная функция

Пусть – биекция. Построим отображение из Y в Х следующим образом. Возьмем произвольный элемент у Î Y. Поскольку f отображает «на», то у него обязательно имеется прообраз х, т.е. такой элемент, что f (x) = y. Этот прообраз является единственным, поскольку отображение f взаимно-однозначно. Итак, произвольному у Î Y мы сопоставили единственный х Î Х. Обозначим его х = g (y). Мы получили отображение g: Y ® X, которое называется обратным к отображению f: X ® Y и обозначается g = f – 1. При этом для х Î Х и у Î Y имеем

x = g (y) Û y = f (x)

и, следовательно

g (f (x)) = x " х Î Х; f (g (y)) = y " у Î Y.

 

Пример

Всюду в дальнейшем область определения и область значений функции – подмножества числовой оси.

Напомним определение функции у = sin х: дуге х единичной окружности сопоставляется проекция на вертикальную ось соответствующего радиус-вектора, составляющего с горизонтальной осью угол х (см. рис.).

 
 


       
 
   
x
 


В этом и состоит «правило», по которому каждому аргументу х ставится в соответствие значение функции у = sin х. При этом областью определения служит вся числовая ось ú. Область значений можно выбирать по-разному. Если взять Y = ú, то отображение не будет сюръективным. Поэтому положим Y = [–1, 1], и тогда sin: ú [–1, 1] – сюръекция. Но поскольку sin периодическая функция, инъекцией это отображение не является. Чтобы получить 1:1 функцию, надо сузить область определения до какого-либо отрезка монотонности синуса. Выберем от резок . Он хорош тем, что симметричен относительно нуля, на

x
x
нем синус сохраняет нечетность
(f (– x) = – f (x)) и принимает все свои зна чения от – 1 до 1. Итак,

– биекция.

Следовательно, существует обратная функция

.

Она также является нечетной. Если , , то

arcsin y = x Û y = sin x

и, следовательно,

arcsin (sin x) = х ; sin (arcsin y) = y .

 

ЗАДАНИЕ. Вспомните определения arccos x и arctg x.

 







Дата добавления: 2015-09-18; просмотров: 425. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия