Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Контрольная работа № 3. Задача 1. Даны три последовательные вершины параллелограмма А(-1;2), В(1;-3),С(4;0)





Вариант 2.

Задача 1. Даны три последовательные вершины параллелограмма А(-1;2), В(1;-3),С(4;0). Не находя координаты вершины D, найти:

1) уравнение стороны AD;

2) уравнение высоты BK, опущенной из вершины В на сторону AD;

3) длину высоты BK;

4) уравнение диагонали BD;

5) тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Задача 2. Даны точки A(1;-2;3), B(2;0;5), C(-1;3;4), D(-2;1;-2). Найти:

1) общее уравнение плоскости АВС;

2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;

3) расстояние от точки D до плоскости ABC;

4) канонические уравнения прямой АВ;

5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;

6) канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC.

Задача 3. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую.

Задача 4. Кривая задана в полярной системе координат уравнением .

Требуется:

1) найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

2) построить полученные точки;

3) построить кривую, соединив построенные точки (от руки или с помощью лекала);

4) составить уравнение этой кривой в прямоугольной декартовой системе координат.

Задача 5. Построить на плоскости геометрическое место точек, определяемое неравенствами

1) ;

2)


 







Дата добавления: 2015-09-18; просмотров: 1647. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия