Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Для того, чтобы решить неравенство на плоскости, надо построить график линии





Для того, чтобы решить неравенство на плоскости, надо построить график линии . Кривая разбивает плоскость на части, в каждой из которых выражение сохраняет свой знак. Выбирая пробную точку в каждой из этих частей, найдем часть плоскости, являющуюся искомым решением неравенства.

1) Построим прямые и , заштрихуем область, в которой . Затем построим параболу и заштрихуем область, содержащую ось симметрии параболы (расположенную внутри параболы); построим прямую и заштрихуем область, лежащую выше прямой. Пересечение всех заштрихованных областей и определит множество точек, представляющих решение рассматриваемой системы.

Рис. 18

 

2) Построим линию, определяемую уравнением . Эта линия представляет собой ту часть окружности или , на которой . Далее построим прямую (). Решением рассматриваемого двойного неравенства является часть плоскости, расположенная между нижней половиной окружности с центром в точке радиуса прямой .

Рис. 19


 

Контрольная работа № 3

Вариант 1.

Задача 1. Даны три последовательные вершины параллелограмма А(1;2), В(-1;3),С(-4;-2). Не находя координаты вершины D, найти:

6) уравнение стороны AD;

7) уравнение высоты BK, опущенной из вершины В на сторону AD;

8) длину высоты BK;

9) уравнение диагонали BD;

10) тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Задача 2. Даны точки A(1;2;3), B(-1;3;5), C(2;0;4), D(3;-1;2). Найти:

1) общее уравнение плоскости АВС;

2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;

3) расстояние от точки D до плоскости ABC;

4) канонические уравнения прямой АВ;

5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;

6) общее уравнение плоскости, проходящей через точку D перпендикулярно прямой AB.

Задача 3. Уравнение второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую, определяемую этим уравнением.

Задача 4. Кривая задана в полярной системе координат уравнением .

Требуется:

5) найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

6) построить полученные точки;

7) построить кривую, соединив построенные точки (от руки или с помощью лекала);

8) составить уравнение этой кривой в прямоугольной декартовой системе координат.

Задача 5. Построить на плоскости геометрическое место точек, определяемое неравенствами

1) ;

2)


 







Дата добавления: 2015-09-18; просмотров: 1193. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия