Расчет коэффициента Спирмена
(связь слабая). Ранговый коэффициент корреляции Кендалла () также может использоваться для измерения взаимосвязи между качественными и количественными признаками, характеризующими однородные объекты и ранжированные по одному принципу. Расчет рангового коэффициента Кендалла осуществляется по формуле: (8.20) где - число наблюдений; - сумма разностей между числом последовательностей и числом инверсий по второму признаку. Расчет данного коэффициента выполняется в следующей последовательности: 1. Значения ранжируются в порядке возрастания или убывания; 2. Значения располагаются в порядке, соответствующем значениям ; 3. Для каждого ранга определяется число следующих за ним значений рангов, превышающих его величину. Суммируя таким образом числа определяется величина , как мера соответствия последовательностей рангов по и и учитывается со знаком (+); 4. Для каждого ранга определяется число следующих за ним значений рангов, меньших его величины. Суммарная величина обозначается через и фиксируется со знаком (-); 5. Определяется сумма баллов по всем членам ряда. В приведенном примере (таблица 8.12) Таким образом: что свидетельствует о практическом отсутствии связи между рассматриваемыми признаками.
Как правило, коэффициент Кендалла меньше коэффициента Спирмена. При достаточно большом объеме совокупности значения данных коэффициентов имеют следующую зависимость: Связь между признаками признается статистически значимой, если значения коэффициентов ранговой корреляции Спирмена и Кендалла больше 0,5. Для определения тесноты связи между произвольным числом ранжированных признаков применяется множественный коэффициент ранговой корреляции (коэффициент конкордации) , который вычисляется по формуле: (8.21) где - количество факторов - число наблюдений - отклонение суммы квадратов рангов от средней квадратов рангов. Пример. Одновременно с проведенными выше расчетами определялась теснота связи между уставным капиталом, числом выставленных акций и числом занятых на этих предприятиях. Таблица 8.13
|