Оценка линейного коэффициента корреляции
Пример: На основе выборочных данных о деловой активности однотипных коммерческих структур оценить тесноту связи между прибылью у (млн. руб.) и затратами на 1 руб. произведенной продукции x (коп.).
Таблица 8.6 Расчетная таблица для определения коэффициента корреляции
1. Используя формулу (8.5) получаем:
2. По формуле (8.6) значение коэффициента корреляции составило:
Таким образом, результат по всем формулам одинаков и свидетельствует о сильной обратной зависимости между изучаемыми признаками.
В случае наличия линейной и нелинейной зависимости между двумя признаками для измерения тесноты связи применяют так называемое корреляционное отношение. Различают эмпирическое и теоретическое корреляционное отношение.
Эмпирическое корреляционное отношение рассчитывается по данным группировки, когда характеризует отклонения групповых средних результативного показателя от общей средней:
(8.8)
где - корреляционное отношение; - общая дисперсия; - средняя из частных (групповых) дисперсий; - межгрупповая дисперсия (дисперсия групповых средних).
Все эти дисперсии есть дисперсии результативного признака. Теоретическое корреляционное отношение определяется по формуле: (8.9) где - дисперсия выравненных значений результативного признака, то есть рассчитанных по уравнению регрессии; - дисперсия эмпирических (фактических) значений результативного признака. Корреляционное отношение изменяется в пределах от 0 до 1 и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции (таблица 8.1).
Для измерения тесноты связи при множественной корреляционной зависимости, то есть при исследовании трех и более признаков одновременно, вычисляется множественный и частные коэффициенты корреляции.
Множественный коэффициент корреляции вычисляется при наличии линейной связи между результативным и несколькими факторными признаками, а также между каждой парой факторных признаков. Множественный коэффициент корреляции для двух факторных признаков вычисляется по формуле:
(8.10)
где - парные коэффициенты корреляции между признаками. Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: . Приближение к единице свидетельствует о сильной зависимости между признаками. На основе данных таблицы 8.4 рассчитаем коэффициент множественной корреляции и его ошибку:
; ; .
Множественный коэффициент корреляции составит:
Частные коэффициенты корреляции характеризуют степень тесноты связи между двумя признаками и при фиксированном значении других факторных признаков, то есть когда влияние исключается, то есть оценивается связь между и в «чистом виде».
В случае зависимости от двух факторных признаков и коэффициенты частной корреляции имеют вид:
(8.11)
где - парные коэффициенты корреляции между указанными в индексе переменными. В первом случае исключено влияние факторного признака , во втором - . На основании приведенных выше данных о зависимости трех факторов деятельности предприятий вычислим частные коэффициенты корреляции (см. табл. 8.4):
; .
|