Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка линейного коэффициента корреляции





Значение линейного коэффициента связи Характер связи Интерпретация связи
r = 0 отсутствует -
0<r<1 прямая с увеличением x увеличивается y
-1< r <0 обратная с увеличением x уменьшается y и наоборот
r= 1 функциональная каждому значению факторного признака строго соответствует одно значение результативного признака

 

Пример: На основе выборочных данных о деловой активности однотипных коммерческих структур оценить тесноту связи между прибылью у (млн. руб.) и затратами на 1 руб. произведенной продукции x (коп.).

 

Таблица 8.6

Расчетная таблица для определения коэффициента корреляции

№ п/п y x yx y2 x2
           
           
           
           
           
           
Сумма          
Средняя 744,33 83,67 60400,67 632056,33 7046,67

1. Используя формулу (8.5) получаем:

 

2. По формуле (8.6) значение коэффициента корреляции составило:

 

Таким образом, результат по всем формулам одинаков и свидетельствует о сильной обратной зависимости между изучаемыми признаками.

 

В случае наличия линейной и нелинейной зависимости между двумя признаками для измерения тесноты связи применяют так называемое корреляционное отношение. Различают эмпирическое и теоретическое корреляционное отношение.

 

Эмпирическое корреляционное отношение рассчитывается по данным группировки, когда характеризует отклонения групповых средних результативного показателя от общей средней:

 

(8.8)

 

где - корреляционное отношение;

- общая дисперсия;

- средняя из частных (групповых) дисперсий;

- межгрупповая дисперсия (дисперсия групповых средних).

 

Все эти дисперсии есть дисперсии результативного признака.


Теоретическое корреляционное отношение определяется по формуле:

(8.9)

где - дисперсия выравненных значений результативного признака, то есть рассчитанных по уравнению регрессии;

- дисперсия эмпирических (фактических) значений результативного признака.

Корреляционное отношение изменяется в пределах от 0 до 1 и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции (таблица 8.1).

 

Для измерения тесноты связи при множественной корреляционной зависимости, то есть при исследовании трех и более признаков одновременно, вычисляется множественный и частные коэффициенты корреляции.

 

Множественный коэффициент корреляции вычисляется при наличии линейной связи между результативным и несколькими факторными признаками, а также между каждой парой факторных признаков.

Множественный коэффициент корреляции для двух факторных признаков вычисляется по формуле:

 

(8.10)

 

где - парные коэффициенты корреляции между признаками.

Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: .

Приближение к единице свидетельствует о сильной зависимости между признаками.

На основе данных таблицы 8.4 рассчитаем коэффициент множественной корреляции и его ошибку:

 

; ; .

 

Множественный коэффициент корреляции составит:

 

 

Частные коэффициенты корреляции характеризуют степень тесноты связи между двумя признаками и при фиксированном значении других факторных признаков, то есть когда влияние исключается, то есть оценивается связь между и в «чистом виде».

 

В случае зависимости от двух факторных признаков и коэффициенты частной корреляции имеют вид:

 

(8.11)

 

где - парные коэффициенты корреляции между указанными в индексе переменными.

В первом случае исключено влияние факторного признака , во втором - .

На основании приведенных выше данных о зависимости трех факторов деятельности предприятий вычислим частные коэффициенты корреляции (см. табл. 8.4):

 

; .

 







Дата добавления: 2015-09-18; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия