Парная регрессия на основе метода наименьших квадратов и метода группировок
Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитически связь между ними описывается уравнениями: прямой гиперболы (8.3) параболы и так далее. Определить тип уравнения можно, исследуя зависимость графически, однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, то это свидетельствует о том, что связь между ними линейная, а при обратной связи - гиперболическая. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболическая или степенная регрессия. Оценка параметров уравнений регрессии (a0, a1, и a2 - в уравнении параболы второго порядка) осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметров модели (a0 , a1), при которых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по выбранному уравнению регрессии: Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид: (8.4) где n - объем исследуемой совокупности (число единиц наблюдения). В уравнениях регрессии параметр a0 показывает усредненное влияние на результативный признак неучтенных в уравнении факторных признаков; коэффициент регрессии a1 показывает, на сколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения. Например, имеются данные, характеризующие деловую активность закрытого акционерного общества (ЗАО): прибыль (млн. руб.) и затраты на 1 руб. произведенной продукции. Таблица 8.2
|