Глава 3. Межатомное взаимодействие. Основные типы связей в твердых телах
Классификация твердых тел. Типы связей До сих пор мы рассматривали твердое тело как систему, состоящую из дискретных частиц (атомов, ионов, молекул), образующих идеальную трехмерную периодическую структуру, и главное внимание уделяли закономерностям строения и симметрии кристаллических решеток. При этом мы ничего не говорили о силах, которые удерживают частицы вместе около положения их равновесия. Силы, удерживающие частицы в кристалле, имеют ту же природу, что и межатомные силы, которые обусловливают образование сложных молекул. Этими силами, как сейчас точно установлено, являются, в основном, силы электростатического притяжения между противоположно заряженными частицами (электронами и ядрами) и силы отталкивания между одноименно заряженными частицами (электронами и электронами, ядрами и ядрами). Оценки потенциалов взаимодействия между частицами в кристалле показывают, что магнитные силы здесь весьма малы, а гравитационными силами вообще можно пренебречь. Таким образом, характер сил межатомного взаимодействия в первую очередь определяется строением электронных оболочек взаимодействующих атомов. Характер межатомных сил иногда кладут в основу классификации твердых тел. Согласно этой классификации все твердые тела разделяют на четыре типа: металлические, ковалентные, ионные и молекулярные кристаллы. Кристаллы неорганических веществ с водородной связью (которая по своему характеру является, в основном, ионной) часто выделяют в отдельный тип. Водородная связьобусловлена электростатическим притяжением между атомом водорода и каким - либо сильно электроотрицательным атомом (О, Р, N, Сl и др.). Классическим примером таких веществ является вода в жидком или твердом состоянии. Из-за недостатка места мы не будем более подробно останавливаться на этом типе связи и отошлем читателя к более фундаментальным трудам по физике твердого тела. Заметим, что не существует однозначного способа классификации твердых тел. Так, все твердые тела можно классифицировать по свойствам симметрии их кристаллических структур, по электрическим свойствам. В соответствии с последней классификацией твердые тела, как это будет показано в гл. 4, делятся на проводники и изоляторы. Типичными проводниками электричества являются металлы (Аg, Си, Аu и др.), а изоляторами — ионные кристаллы. Между металлами и изоляторами располагаются полуметаллы (Вi, Sb) и полупроводники (Si, Ge,). Полупроводники при низких температурах ведут себя как изоляторы. Полуметаллы, подобно металлу, проводят ток, хотя концентрация электронов проводимости в них примерно в 104 раз меньше, чем в металлах. Такое различие обусловлено особенностями электронной структуры. В настоящей главе примем классификацию твердых тел, основанную на характере межатомных сил взаимодействия, который, как говорилось выше, определяется строением электронных оболочек взаимодействующих атомов. Как правило, в межатомных связях у большинства элементов принимают участие все внешние валентные электроны. У Сu, Аg, Аu, Еu, Vb, Аm вследствие сравнительно небольшой энергии связи электронов заполненных d10-, f7- и f14- оболочек в межатомных связях могут дополнительно участвовать один-два электрона этих оболочек. Существует ряд элементов, имеющих большое число валентных электронов во внешней оболочке, но из-за их высоких энергий связи с атомом не все валентные электроны могут участвовать в межатомных связях (О, F, Fe, Со, Ni и др.). Число валентных электронов, способных участвовать в межатомных связях, периодически изменяется с возрастанием атомного номера z, что является следствием периодического закона Менделеева, в соответствии с которым все физико-химические свойства должны изменяться периодически с ростом атомного номера. При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется, так называемой электроотрицательностью атомов - X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел. Таким образом, в левой части таблицы Менделеева располагаются элементы с наиболее сильно выраженными металлическими свойствами (металлы), а в правой — элементы с наиболее сильно выраженными неметаллическими свойствами (металлоиды ). Разделение химически активных элементов на металлы и металлоиды позволяет ввести три основных типа связи: металлическая, ковалентная и ионная. Связь между сильно электроположительными металлами и электроотрицательными неметаллами трактуется как ионная связь. Так как она осуществляется между противоположно заряженными ионами, то ее называют—по полярности ионов — гетерополярной. К гомополярным относят металлическую и ковалентную связи. Металлическая связь реализуется между металлами и металлами, а ковалентная — между неметаллами и неметаллами или металлоидами. Названные типы связей являются предельными случаями химического взаимодействия. В реальной ситуации ковалентные связи в чистом виде редко реализуются и имеют в какой-то мере частично ионный характер. Соединений, близких к идеально ионным, также чрезвычайно мало.
|