Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая последовательность кинематического анализа





Рассмотренные выше метод векторных контуров и метод преобразования координат позволяют произвести полный кинематический анализ механизма. Рассмотрим, как эти два метода взаимодействуют на примере 6-звенного механизма, представленного на рис. 2.16.

Общую последовательность кинематического расчета можно представить следующим образом.

1. По исходно заданным кинематическим параметрам движения входного звена определяются параметры движения той его точки, в которой присоединяется 1-я структурная группа.

2. Производятся расчеты для неё и вычисляются параметры движения той точки звена структурной группы, в которой присоединяется следующая.

3. Эти значения преобразуются в систему координат следующей структурной группы, производится её расчет и т.д.

Рассмотрим эту последовательность подробно. Пусть изначально задан угол поворота кривошипа ОА j01 от оси X0, значение его угловой скорости w1, и ускорения e1 в данном положении.

Сначала решаем задачу для контура OA1B1C1, состоящего из входного кривошипа и 3-х шарнирной структурной группы. Решение производим в НСК OXГ1YГ1, естественной для данной группы (см. рис. 2.16). Угол поворота кривошипа в этой системе: j1 = j01 – y01,

где: y01 – угол поворота системы OXГ1YГ1 от OX0Y0

Координаты опоры С1(x C1, y C1) должны быть заданы как конструктивные параметры.

Параметры движения шарнира А1 определяем так, как это описано в подразделе 2.2. Далее, производим анализ методом векторных контуров, как это описано в п. 2.3.1. В результате находим j2, w2, e2, j3, w3, e3 – параметры вращательного движения шатуна А1В1 и коромысла В1С1.

Методом преобразования координат (см. подраздел 2.4) находим параметры движения центров масс этих звеньев и точки А2, в которой присоединяется следующая структурная группа.

Переходим к следующему контуру C1A2B2, рассмотрим его отдельно (рис. 2.17). Он представляет собой 4-х звенный механизм со структурной группой типа “шатун-ползун”. Как показано в п. 2.3.2 решение удобно искать в НСК OXГ2YГ2, поэтому координаты шарнира А2, проекции его скорости и ускорения, найденные ранее в НСК OXГ1YГ1 следует преобразовать в НСК OXГ2YГ2, тогда контур C1A2B2 решается так, как это описано в п. 2.3.2. В результате находим j4, w4, e4 – параметры вращательного движения шатуна, A2C2 и x C2, v C2, a C2 – положение, скорость и ускорение ползуна.

Методом преобразования координат находим параметры движения центров масс шатуна и при необходимости преобразовываем их в НСК X0Y0.







Дата добавления: 2015-09-19; просмотров: 586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия