Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод преобразования координат






Во всех рассмотренных выше задачах выбиралась такая система координат OXY, в которой уравнения кинематики имеют наиболее простой и удобный для решения вид. Однако конечный результат часто бывает необходимо получить в некоторой неподвижной системе координат, в которой рассматривается весь механизм в целом. Кроме того, полученные в подразделе 2.3 выражения не позволяют определять кинематические параметры движения произвольных точек на звеньях механизмов, например, центров масс, рабочих органов и т.п. Все эти проблемы удобно решать методом преобразования координат.

Рассмотрим конкретный пример. Пусть требуется определить кинематическое параметры движения некоторой точки S на шатуне AB (рис. 2.15).

Суть метода. С каждым звеном механизма связывают свою систему координат. На рис. 2.15 OXY – неподвижная система координат (НСК), связанная со стойкой, AX2Y2 – подвижная локальная система координат (ЛСК), связанная с шатуном 2 и движущаяся вместе с ним. Координаты (.)S в ЛСК нам известны и в процессе движения они не меняются. Связь между координатами точки, измеренными в разных системах известна из аналитической геометрии, на этом и строится данный метод.

Положение начала ЛСК надо выбирать так, чтобы можно было заранее определить его кинематические параметры движения. Для рассматриваемых примеров координаты (xA, yA), проекции скорости (v Ax, v Ay) и ускорения (a Ax, a Ay) точки A найдём как параметры движения конца кривошипа 1 (см. п. 2.2.1).

xA = lОА cos j1,

yA = lОА sin j1,

где lОА – длина кривошипа.

v Ax = – w1 lОА sin j1,


v Ay = w1 lОА cos j1,

где w1 – угловая скорость кривошипа.

где e1 – угловое ускорение кривошипа.

Величины j1, w1, e1 должны быть заданы по постановке задачи кинематического анализа.

Ось X2 ЛСК следует направлять вдоль соответствующего вектора l 2 (см. векторные контуры в п. 2.3) или параллельно ему, ось Y2 – так, чтобы образовывалась правая система координат.

Кроме того, будем полагать, что предварительно выполнен расчёт методом векторных контуров (см. п. 2.3.1, 2.3.2), и нам известны параметры вращательного движения шатуна 2 j2, w2, e2.

Координаты (.)S в НСК найдём, просто записав связь между координатами точки, измеренными в разных системах координат. В матричной форме она имеет вид:

 

(2.36)

 

Последовательно дифференцируя выражение (2.36) по времени, получим зависимости для определения проекций скорости и ускорения (.)S в НСК:

 

(2.37)

 

 







Дата добавления: 2015-09-19; просмотров: 629. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия