Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение кривых линий




В задании строятся коробовые и лекальные кривые линии.

Коробовая линия – выпуклая кривая линия, состоящая из сопряженных дуг окружностей различных радиусов. Наиболее распространенными из них являются овалы.

Лекальные линии – кривые линии, построение которых выполняется по предварительно определенным точкам, например: эллипс, парабола, гипербола.

 

3.1. Построение овала

Овал представляет собой сопряжение двух дуг одного радиуса с двумя дугами другого радиуса.

Построение овала по двум осям (рисунок 22) выполняется следующим образом:

- проводят осевые линии, на которых симметрично от точки пересечения O откладывают отрезки AB и CD, равные большой и малой осям овала;

- на малой оси откладывают расстояние OE=OA и соединяют точки A и C;

- на отрезке AC откладывают отрезок CF=CE;

- делят отрезок AF пополам (см. п. 2.1.1) и через точку K проводят прямую перпендикулярную AF до пересечения с большой и малой осями овала в точках O1 и O2;

- строят зеркальное отображение точек O1 и O2 (точки O3 и O4);

- из точек O2 и O4 радиусом R= O2C, а из точек O1 и O3 радиусом R1= O1A проводят дуги до их пересечения с прямыми, проведенными через центры дуг (точки сопряжения). Существуют и другие способы построения овала.

 


Рисунок 22 – Построе- Рисунок 23 – Построение

ние овала эллипса

 

3.2. Построение эллипса

Эллипс – замкнутая плоская выпуклая кривая, сумма расстояний каждой точки которой до двух данных точек, называемых фокусами, лежащих на большой оси постоянная, и равна длине большой оси. Построение овала по двум осям (рисунок 23) выполняется следующим образом:

- проводят осевые линии, на которых симметрично от точки пересечения O откладывают отрезки AB и CD, равные большой и малой осям эллипса;

 

 

- строят две окружности радиусами равными половине осей эллипса с центром в точке пересечения осей;

- делят окружность на двенадцать равных частей. Деление окружности выполняют как показано в п.2.3;

-.через полученные точки проводят лучи-диаметры;

- из точек пересечения лучей с соответствующими окружностями проводят прямые линии параллельно осям эллипса до их взаимного пересечения в точках лежащих на эллипсе;

- полученные точки соединяют плавной кривой линией при помощи лекал. При построении лекальной кривой линии необходимо выбирать и располагать лекало так, чтобы соединялось как минимум четыре-пять точек.

Существуют и другие способы построения эллипса.

 

3.3. Построение параболы

Парабола – плоская кривая линия, каждая точка которой равноудалена от директрисы DD1– прямой, перпендикулярной к оси симметрии параболы, и от фокуса F, точки расположенной на оси симметрии. Расстояние KF между директрисой и фокусом называется параметром параболы p.

На рисунке 24 показан пример вычерчивания параболы по вершине O, оси OK и хорде CD. Построение выполняют следующим образом:

- проводят горизонтальную прямую линию на которой отмечают вершину O и откладывают ось OK.;

- через точку K проводят перпендикуляр на котором симметрично вверх и вниз откладывают длину хорды параболы;

- строят прямоугольник ABCD, в котором одна сторона равна оси, а другая – хорде параболы;

- сторону BC делят на несколько равных частей, а отрезок KC на столько же равных частей;

- из вершины параболы О проводят лучи через точки 1, 2, и т.д., а через точки 11, 21, и т. д.;

- проводят прямые параллельные оси и определяют точки пересечения лучей с соответствующими параллельными прямыми, например, точку пересечения луча О1 с прямой О11, которая принадлежит параболе;

- полученные точки соединяют плавной кривой линией под лекало. Вторая ветвь параболы строится аналогично.

Существуют и другие способы построения параболы.

 

3.4. Построение гиперболы

Гиперболой называется плоская кривая линии, состоящая из двух разомкнутых, симметрично расположенных ветвей в которых разность расстояний от каждой точки до фокусов. F и F1 величина постоянная и равна расстоянию между вершинами гиперболы A и B.

На рисунке 25 приведен пример построения гиперболы по заданному расстоянию между вершинами A и B – c, хорде гиперболы – b и ее отстоянию от вершины – a. Построение выполняют следующим образом:

- проводят горизонтальную прямую линию на которой откладывают расстояние между вершинами – точки A и B;

- от точки А откдадывают отстояние хорды от вершины гиперболы (точка О), от которой вверх и вниз симметрично откладывают длину хорды (точки C и D);

- строят прямоугольник KNCD. Сторону прямоугольника KC делят на пять равных частей, а OC на такое же число равных частей;

- соединяют вершину A с точками 1, 2, …, C, а вершину B с точками 11, 21,…, C.

- определяют точки пересечения луча А1 с лучом А11, луча А2 с лучом А21 и т. д.

- полученные точки пересечения соединяют плавной кривой линией под лекало.

Остальные ветви гиперболы строят как зеркальное отображение построенной ветви.

 
 

 

 


Рисунок 24 – Построение Рисунок 25 – Построение ги

параболы перболы







Дата добавления: 2015-09-15; просмотров: 312. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия