Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Десять измерений





Сразу после появления струнной теории ее начали активно разраба-
тывать, снимая с нее покров тайны. Клод Лавлейс из Университета
Рутгерс обнаружил в модели Венециано крошечный математический


изъян, исправить который можно было только в том случае, если
Предположить, что пространство-время обладает 26 измерениями.
Подобным образом и суперструнная модель Неве, Шварца и Рамона
Могла существовать только в десяти измерениях. Физиков это шо-
кировало. Такого наука не видела за всю свою историю. Нигде больше
мы не встретим теории, которая определяет количество измерений
сама для себя. Например, теории Ньютона и Эйнштейна могут быть
сформулированы для любого числа измерений. Знаменитый закон
тяготения, построенный на обратных квадратах, можно обобщить
в законе обратных кубов для четырех измерений. Что же касается
струнной теории, то она могла существовать только в особых из-
мерениях.

Спрактическойточкизренияэтобылокатастрофой.Общепринято
было считать, что наш мир существует в трех пространственных из-
мерениях (длина, высота и ширина) и одном временном. Принять
теорию, основанную на десяти измерениях, значило признать, что она
граничит с фантастикой. Струнные теоретики превратились в объект
насмешек. (Джон Шварц вспоминает, как он ехал в лифте с Ричардом
Фейнманом, который в шутку сказал: «Ну что, Джон, и в скольких

измерениях вы живете сегодня?») Как струнные физики ни пыта-

лись спасти модель от краха, она все же довольно быстро скончалась.

Только самые упорные продолжили работу над струнной теорией в

тот период, и они были весьма немногочисленны.

Двоими из тех, кто продолжил работу над струнной теорией в
те унылые годы, были Джон Шварц из Калифорнийского техноло-
гического института и Джоэл Шерк из Высшей технической школы
в Париже. До того времени предполагалось, что струнная модель
создана для описания только сильных ядерных взаимодействий. Но
была одна проблема: модель предсказывала существование частицы,
которая не встречалась в сильных взаимодействиях, — любопытной
частицы с нулевой массой, обладающей двумя квантовыми едини-
цами спина. Ни одна из попыток избавиться от этой надоедливой
частицы не увенчалась успехом. Каждый раз, когда ученые пытались
исключить эту нежелательную частицу со спином 2, вся модель
разрушалась и теряла свои волшебные свойства. Казалось, в этой
нежелательной частице каким-то образом содержался секрет всей
модели.


Затем Шерк и Шварц выдвинули дерзкое предположение. Воз-
можно, изъян на самом деле был благословением. Если они интер-
претировали эту назойливую частицу со спином в 2 как гравитон
(квант гравитации из теории Эйнштейна), то тогда оказывалось, что
струнная теория включала в себя теорию гравитации Эйнштейна!
(Иными словами, общая теория относительности Эйнштейна про-
сто выглядит как самая низкая вибрация или нота суперструны.) По
иронии судьбы, в то время как в других квантовых теориях физики
усиленно пытаются не допускать никакого упоминания о гравитации,
струнная теория просто-напросто требует ее присутствия. (В сущ-
ности, это одна из привлекательных сторон струнной теории — она
должна включать гравитацию, иначе теория окажется противоре-
чивой.) После этого отважного рывка ученые поняли, что струнная
теория была неверно применена к неверной проблеме. Струнной
теории предстояло стать не просто теорией сильных ядерных взаимо-
действий — ей было предначертано стать теорией всего. Как отметил
Виттен, привлекательной стороной струнной теории является то, что
она требует присутствия гравитации. В то время как в стандартные
теории поля десятилетиями не удавалось включить гравитацию, в
струнной теории она неотъемлемый элемент.

Однако на конструктивную идею Шерка и Шварца в то время
никто не обратил внимания. Для того чтобы струнная теория опи-
сывала как гравитацию, так и субатомный мир, требовалось, чтобы
струны были длиной всего лишь в 10-33 см (длина Планка). Иными
словами, они были в миллиард миллиардов раз меньше протона. Для
большинства физиков это было чересчур.

Однако к середине 1980-х годов все другие попытки создания
единой теории поля потерпели неудачу. Те теории, которые наивно
пытались присоединить гравитацию к Стандартной модели, утопали
в болоте бесконечностей (вскоре я поясню эту проблему). Каждый
раз, когда ученые пытались искусственным образом соединить
гравитацию с другими квантовыми силами, это приводило к появле-
нию математических противоречий, которые убивали всю теорию.
(Эйнштейн считал, что у Бога, возможно, не было выбора при соз-
дании Вселенной. Одной из причин тому может быть факт, что лишь
одна-единственная теория свободна от всех этих математических
противоречий.)


Существовало два вида математических противоречий. Пер-
вый — это проблема бесконечностей. Обычно квантовые флуктуа-
ции чрезвычайно малы. Квантовые эффекты, как правило, оказывают
самое незначительное воздействие на законы движения Ньютона.
Именно поэтому мы можем не обращать на них внимания в нашем
макроскопическом мире — ведь они слишком малы, чтобы быть за-
меченными. Однако когда мы превращаем гравитацию в квантовую
теорию, эти квантовые флуктуации становятся, в сущности, бес-
конечными, а это полный абсурд. Второе математическое противо-
речие относится к «аномалиям», небольшим отклонениям в кванто-
вой теории, которые возникают при добавлении в теорию квантовых
флуктуации. Эти аномалии нарушают первоначальную симметрию
теории и лишают ее тем самым первоначальной силы.

Представьте, к примеру, конструктора ракеты: он должен создать
гладкий обтекаемый летательный аппарат, который сможет пройти
сквозь атмосферу. Чтобы уменьшить трение воздуха и лобовое со-
противление, ракета должна быть строго симметричной (в этом
случае цилиндрически симметричной, то есть не изменять форму,
если вращать ее вокруг оси). Такая симметрия называется 0(2). Но
существуют две потенциальные проблемы. Во-первых, поскольку
ракета движется с огромной скоростью, в ее крыльях может начаться
вибрация. Как правило, при полетах на дозвуковых скоростях такие
вибрации очень незначительны. Однако при полетах на сверхзвуко-
вых скоростях эти отклонения могут возрасти и в конечном итоге
привести к тому, что крыло оторвется. Подобные противоречия
неотступно преследуют любую квантовую теорию гравитации^101
Обычно они настолько малы, что их можно не принимать в расчет, но
в квантовой теории гравитации они все расстраивают.

Второй проблемой является то, что в корпусе ракеты могут
остаться крошечные трещины. Эти изъяны нарушают изначально
задуманную симметрию ракеты О(2). Как бы ни были малы эти
трещины, они могут расшириться и в конце концов стать причиной
разрушения всего корпуса. Подобным образом такие «трещины»
убивают.симметрии теории гравитации.

Существует два способа решения проблемы. Первый заключает-
ся в том, чтобы найти решение с помощью «пластыря». Этот подход
можно сравнить с заклеиванием трещин и укреплением крыльев при


помощи палок в надежде, что ракета не взорвется и ее не разорвет на
части в атмосфере. Исторически физики предпочитали именно этот
подход в своих попытках соединения квантовой теории с гравита-
цией. Они пытались замести эти две проблемы под половик. Второй
способ состоит в том, чтобы начать все сначала, с новой формой и
новыми экзотическими материалами, которые могут выдержать на-
грузки межзвездных полетов.

В течение нескольких десятилетий физики пытались «зашто-
пать» квантовую теорию гравитации, но в результате сталкивались
с безнадежно огромным количеством новых противоречий и ано-
малий. Постепенно они поняли, что выход заключается в том, чтобы
отбросить возможное решение проблемы при помощи «пластыря»
и принять принципиально новую теорию^Ч

 







Дата добавления: 2015-08-12; просмотров: 345. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия