Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Предположим, что зависимость выработки продукции на одного работника характеризуется следующим уравнением:





Предположим, что зависимость выработки продукции на одного работника характеризуется следующим уравнением:

.

На основании исходных данных составляем систему уравнений для определения коэффициентов и .

;

; ;

;

;

; ;

.

Решим эту систему по методу Крамера. Вычисляем определитель системы:

Аналогично вычисляем частные определители, заменяя соответствующий столбец столбцом свободных членов:

; ; .

Коэффициенты уравнения определяются по формулам:

Таким образом, уравнение имеет вид:

.

Возможен и иной подход к определению параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

, (4)

где - стандартизованные переменные: , для которых среднее значение равно нулю, а среднее квадратическое значение равно единице;

- стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида для определения стандартизованных коэффициентов регрессии.

 

. (5)

Следует отметить, что величины и называются парными коэффициентами корреляции и определяются по формулам

, . (6)

Решая систему (5) определяем стандартизованные коэффициенты регрессии. Сравнивая их друг с другом, можно ранжировать факторы по силе воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Получим для предыдущего примера уравнение регрессии в стандартизованном масштабе.

, , ,

;

;

.

Согласно (5) получаем систему нормальных уравнений в виде:

Окончательно получаем уравнение регрессии в стандартизованном масштабе в виде:

Используя формулы можно вернуться к уравнению «чистой» регрессии:

Сравнивая полученное уравнение с полученным ранее мы видим хорошее соответствие полученных разными способами результатов.

 







Дата добавления: 2015-08-12; просмотров: 372. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия