Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показатели качества регрессии





Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как

, (7)

где - общая дисперсия результативного признака;

- остаточная дисперсия для уравнения .

Границы изменения величины - от 0 до 1. Чем ближе значение к единице, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции:

.

При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение факторы малозначимы, то индекс множественной корреляции может практически совпадать с индексом парной корреляции.

Для вычисления индекса множественной корреляции можно пользоваться следующей формулой

.

Для линейного уравнения регрессии в стандартизованном масштабе формула индекса множественной корреляции может быть представлена в виде

. (8)

Пример. Для уравнения корреляции, полученного в предыдущем примере, вычислить индекс множественной корреляции и сравнить его с парными индексами корреляции.

Ранее были получены следующие значения:

; ; .

Тогда по формуле (8) получаем

.

Сравниваем индекс множественной корреляции с парными индексами корреляции:

.

Следовательно, включение обоих факторов в уравнение множественной регрессии является обоснованным.

 

Значимость уравнения множественной регрессии в целом оценивается с помощью с помощью F -критерия Фишера:

, (9)

где - индекс множественной корреляции (тоже, что и );

- число наблюдений;

- число факторов.

Полученное по формуле (9) значение F сравнивается с табличным при уровне значимости . Если фактическое значение F -критерия Фишера превышает табличное, то уравнение статистически значимо с вероятностью . При использовании таблицы следует принимать .

Пример. Для уравнения корреляции, полученного в предыдущих примерах, вычислить значение F -критерия Фишера и определить статистическую значимость уравнения.

Ранее был вычислен индекс множественной корреляции . По формуле (9) получаем

.

По таблице определяем для значений :

Мы видим, что , а значит полученное уравнение корреляции является статистически значимым.

 







Дата добавления: 2015-08-12; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия