Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Особенности нахождения среднего значения вариационного ряда





 

На вопрос, каким же будет среднее значениеср) разряда рабочих на умозрительном уровне, ответить легко: по второй графе табл. 2 – 4-й разряд, поскольку среднее – это когда сумму всех элементов совокупности (здесь – вариантов ВР) делим на их число. Тогда сумма разрядов составит 2+3+4+5+6 = 20. Среднее как частное от деления суммы на число элементов совокупности 20 / n = 20 / 5 = 4 (р.).ет меру этой неодинаковост

Однако это будет справедливым, если каждый разряд в табл. 2 появился бы равное число раз: или все по одному разу, или все по нескольку раз, но с одинаковой частотой. Но частота проявления каждого разряда в исходной СС в нашем первоначальном восприятии уже была неодинаковой, тогда как содержание табл. 2 показывает количественную меру этой неодинаковости: 2-й разряд проявляется в 5 случаях из 50-ти, третий – 13-ти случаях из 50-ти и т.д. В этом случае, чтобы учесть неодинаковую частоту появления каждого варианта, вычисляют т.н. «взвешенную среднюю» хсрв:

 

∑ хi ∙ fi

хсрв = ————. (2)

∑ fi

 

Произведя вычисления по формуле (2), получим:

 

∑ хi ∙ fi 2∙ 5 + 3∙ 13 + 4∙ 16 + 5∙ 10 + 6∙ 6 199

хсрв = ———— = —————————————— = ——— = 3,98 (р.).

∑ fi 50 50

 

Хоть и близко значение 3,98 к 4,00, но все же они разные по своей сути. А вот если бы частота для всех вариантов (разрядов) была бы одинаковой 10; всего вариантов n=5, на каждый вариант по 10, в сумме 50; все сходится). Умножим числитель и знаменатель выражения (2) на единицу и внесем ее как постоянную величину в знак сумм. Тогда одинаковость частот можно так:

 

fi = f1 = f2 = f3 = f4 = f5 = fconst = f = 10, (3)

 

а выражение (2) с преобразованиями примет вид (постоянное значение частоты выносим за знак сумм числителя и знаменателя):

∑ 1∙ хi ∙ f f ∑ 1∙ хi 1∙ ∑ хi 1

хсрв = ———— = ———— = —— = — ∑ хi = xср. (4)

∑ 1∙f f ∑ 1 N N

 

То есть сумма единиц в знаменателе от 1 до N и есть (1+1+1+ …… +1) = N единиц. Остальное соответственно в числителе и знаменателе выражения (4) сокращается.

Таким образом при одинаковой частоте появления вариантов среднее взвешенное хсрв сводится к простой механической средней xср.

Или, другими словами, механическое среднее представляет собой средневзвешенную величину в случае, когда частота появления вариантов ВР одинакова. То есть среднее механическое – это в общем случае частный случай среднего взвешенного.

 







Дата добавления: 2015-08-12; просмотров: 399. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.209 сек.) русская версия | украинская версия