Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейная зависимость и независимость векторов





Набор векторов называется системой векторов. Система из векторов называется линейно зависимой, если существуют такие числа , не все равные нулю одновременно, что Система из векторов называется линейно независимой, если равенство возможно только при , т.е. когда линейная комбинация в левой части равенства тривиальная. 1. Один вектор тоже образует систему: при — линейно зависимую, а при — линейно независимую. 2. Любая часть системы векторов называется подсистемой. Базисом в трехмерном пространстве R3 называется упорядоченная тройка любых линейно-независимых векторов.

Базис R2.и R3

d={α,β}=[ α ]εR^2

[β]

d={α,β,γ}=[ α ]εR^3

[β]

[γ]

Разложение произвольного вектора по базису. Каждый вектор на плоскости может единым образом представлен в линейной комбинации базисных векторов на этой плоскости(этого пространства).Коэффициент этой линейной комбинации называется координатой вектора в данном базисе. Замечание. 2 коллинеарные векторы зависимы. 3 коллинеарные векторы в пространстве также линейно зависимы если векторы не коллинеарные, то они образуют базис на плоскости, а не коллинеарные базис в пространстве.








Дата добавления: 2015-08-12; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия