Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определители второго и третьего порядка,их вычисления и основные свойства.





Определители второго и третьего порядка, их вычисление и основные свойства. Определитель – это числовая характеристика квадратной матрицы; обозначается символами detA, или буквами D, . Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом: .При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали. Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом: = Основные свойства определителей: Свойства определителей разберем на примере определителей 2-го и 3-го порядка. 1. Определитель матрицы не изменяется при ее транспонированииDet = det , где = , =

- обозначение транспонированной матрицы .Транспонирование – это процедура, связанная с заменой строк матрицы на столбцы = =

Из первого свойства следует, что любое свойство, сформулированное для строк определителя, справедливо и для столбцов, и - наоборот. 2. Знак определителя изменится на противоположный, если поменять местами два столбца (строки)

= = = 3. Определитель равен нулю, если содержит нулевой столбец (строку) = 0.4. Определитель равен нулю, если содержит два одинаковые столбца (строки) = = 0

5. Коэффициент, на который умножены все элементы некоторого столбца (строки) можно выносить за определитель, как множитель = 6. Определитель равен нулю, если содержит пропорциональные столбцы (строки) = 0 ó = = 0 (см. свойство 4)

7. Если в определителе каждый элемент некоторого i-го столбца представлен суммой двух слагаемых, тогда данный определитель может быть представлен суммой двух определителей того же порядка.Столбцы полученных определителей, кроме i-го столбца, совпадают со столбцами исходного определителя. I-й столбец первого полученного определителя состоит соответственно из первых слагаемых в суммах, которыми представлены соответствующие элементы i-го столбца исходного определителя. I-й столбец второго полученного определителя состоит соответственно из вторых слагаемых в суммах, которыми представлены соответствующие элементы i-го столбца исходного определителя. = + В силу свойства 1, данное свойство справедливо и для строк. Утверждение 3 Определитель не изменится, если к одному из его столбцов прибавить другой его столбец, умноженный на константу (см. свойства 7,6). В силу свойства 1, данное утверждение справедливо и для строк. 8. Определитель равен нулю, если один из его столбцов (строк) представляет собой линейную комбинацию некоторых других столбцов (строк). Рассмотрим определитель ;У которого третий столбец представляет собой линейную комбинацию первого и второго столбцов с коэффициентами И : = +

= 0 ó = + = 0 + 0








Дата добавления: 2015-08-12; просмотров: 677. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия