Демодуляция УМ
Демодуляция УМ сигналов много сложнее демодуляции сигналов АМ. При демодуляции записанных в ЗУ цифровых сигналов обычно используется метод формирования комплексного аналитического сигнала с помощью преобразования Гильберта:
ua(t) = u(t) + j uh(t),
где uh(t) – аналитически сопряженный сигнал или квадратурное дополнение сигнала u(t). Полная фаза колебаний представляет собой аргумент аналитического сигнала:
y(t) = arg(ua(t)).
Дальнейшие операции определяются видом угловой модуляции. При демодуляции ФМ сигналов из фазовой функции вычитается значение немодулированной несущей ωоt:
j(t) = y(t) - ωot.
При частотной модуляции фазовая функция дифференцируется с вычитанием из результата значения частоты ωо: j(t) = dy(t)/dt - ωo.
В принципе, данный метод может применяться и в реальном масштабе времени, но с определенной степенью приближения, поскольку оператор Гильберта слабо затухает. При демодуляции в реальном масштабе времени используется квадратурная обработка, при которой входной сигнал умножается на два опорных колебания со сдвигом фазы между колебаниями в 90о:
u1(t) = u(t) cos ωot = Um cos(ωot+j(t) cos ωot = ½ Um cos j(t) + ½ cos(2wot+j(t)), u2(t) = u(t) sin ωot = Um cos(ωot+j(t) sin ωot = - ½ Um sin j(t) + ½ sin(2wot+j(t)).
Из этих двух сигналов фильтрами низких частот выделяются низкочастотные колебания, и формируется аналитический сигнал: ua(t) = ½ Um cos j(t) - ½j Um sin j(t).
Аргумент этого аналитического сигнала, как и в первом случае, представляет полную фазу колебаний, обработка которой выполняется аналогично.
Квадратурная модуляция позволяет модулировать несущую частоту одновременно двумя сигналами путем модуляции амплитуды несущей одним сигналом, и фазы несущей другим сигналом. Уравнение результирующих колебаний амплитудно-фазовой модуляции:
s(t) = u(t) cos(ωot+j(t)).
Сигнал s(t) обычно формируют в несколько другой последовательности, с учетом последующей демодуляции. Раскроем косинус суммы и представим сигнал в виде суммы двух АМ-колебаний.
s(t) = u(t) cos ωot·cos j(t) – u(t) sin ωot·sin j(t).
При a(t) = u(t) cos j(t) и b(t) = -u(t) sin j(t), сигналы a(t) и b(t) могут быть использованы в качестве модулирующих сигналов несущих колебаний cos ωot и sin ωot, сдвинутых по фазе на 90о относительно друг друга: s(t) = a(t) cos ωot + b(t) sin ωot.
Полученный сигнал называют квадратурным (quadrature), а способ модуляции - квадратурной модуляцией (КАМ). Спектр квадратурного сигнала может быть получен непосредственно по уравнению балансной модуляции для суммы двух сигналов:
S(ω) = ½ A(ω+ωo) + ½ A(ω-ωo) – ½j B(ω+ωo) + ½j B(ω-ωo).
Демодуляция квадратурного сигнала соответственно выполняется умножением на два опорных колебания, сдвинутых относительно друг друга на 90о:
s1(t) = s(t) cos ωot = ½ a(t) + ½ a(t) cos 2ωot + ½ b(t) sin 2ωot, s2(t) = s(t) sin ωot = ½ b(t) + ½ a(t) sin 2ωot - ½ b(t) cos 2ωot.
Низкочастотные составляющие a(t) и b(t) выделяются фильтром низких частот. Как и при балансной амплитудной модуляции, для точной демодуляции сигналов требуется точное соблюдение частоты и начальной фазы опорного колебания.
Заключение
|