Ближний (радиальный) транспорт ионов в тканях корня. Симпластический и апопластический пути
Раздел 6 Минеральное питание Тема 3 Транспорт ионов в растении
1. Ближний (радиальный) транспорт ионов в тканях корня. Симпластический и апопластический пути. 2. Дальний транспорт. Восходящее передвижение веществ по растению; путь, механизм. 3. Поглощение ионов клетками листа; отток ионов из листьев. 4. Перераспределение и реутилизация веществ в растении.
Ближний (радиальный) транспорт ионов в тканях корня. Симпластический и апопластический пути Ближний транспорт — это передвижение ионов, метаболитов и воды между клетками и тканями (в отличие от мембранного транспорта в каждой клетке). Дальний транспорт — передвижение веществ между органами в целом растении. Транспорт веществ в растении осуществляется по любым тканям и по проводящим пучкам, специализированным для этой цели. В свою очередь передвижение воды и растворенных веществ по любым тканям может происходить: а) по клеточным стенкам, т. е. по апопласту, б) по цитоплазме клеток, соединенных друг с другом плазмодесмами, т. е. по симпласту, в) возможно, по эндоплазматическому ретикулуму с участием плазмодесм. Передвижение воды и веществ по проводящим пучкам включает в себя транспорт по ксилеме («восходящий ток» — от корней к органам побега) и по флоэме («нисходящий ток» — от листьев к зонам потребления питательных веществ или отложения их в запас). По флоэме транспортируются метаболиты и при мобилизации запасных веществ. Радиальный транспорт. Путем диффузии и обменных процессов ионы поступают в клеточные стенки ризодермы и затем через коровую паренхиму перемещаются к проводящим пучкам. Это передвижение происходит как по клеточным стенкам — апопласту, так и по симпласту. Перемещение ионов по апопласту происходит за счет диффузии и обменной адсорбции по градиенту концентрации и ускоряется током воды. Движение минеральных веществ по симпласту осуществляется благодаря движению цитоплазмы, а между клетками — по плазмодесмам. Направленному движению по симпласту способствуют градиенты концентрации веществ. Эти градиенты возникают вследствие того, что поступившие в клетку вещества включаются в процессы метаболизма и концентрация их снижается. Диффузия ионов и молекул по кажущемуся свободному пространству клеток прерывается на уровне эндодермы. Единственный путь дальнейшего передвижения веществ через эндодерму — транспорт по симпласту, что обеспечивается метаболическим контролем поступления веществ. Существование в эндодерме пропускных клеток, в которых пояски Каспари недоразвиты или отсутствуют, позволяет незначительной части поглощенных веществ избежать метаболического контроля. Симпластический транспорт является основным для многих ионов. При этом активной метаболизации подвергаются соединения, содержащие азот, углерод, фосфор, в меньшей степени — серу, кальций, хлор. Другие ионы метаболическому контролю практически не подвергаются. Существенную роль в симпластическом транспорте веществ играют вакуоли. В определенной степени они конкурируют с сосудами ксилемы за поглощенные вещества и таким образом выполняют роль регулятора поступления веществ в сосуды. Этот процесс зависит от степени насыщения вакуолярного сока растворенными веществами. При снижении концентрации веществ в цитоплазме они могут вновь выходить из вакуолей, представляя, таким образом, запасной фонд питательных веществ. Поглощение ионов вакуолями снижает концентрацию их в симпласте и обеспечивает создание градиента концентрации, необходимого для транспорта их по симпласту. Каким образом ионы поступают в мертвые сосуды ксилемы, т. е. как осуществляется ее загрузка? Ксилемный сок представляет собой раствор, в основном состоящий из неорганических веществ. Однако в пасоке, вытекающей из ксилемы пенька при удалении верхней час стебля, обнаружены также различные азотистые соединен (аминокислоты, амиды, алкалоиды и др.), органические кислоты, фосфорорганические эфиры, соединения, содержащие серу, некоторое количество сахаров и многоатомных спиртов а также фитогормоны. В ксилемном соке могут содержать и более сложные вещества, попадающие сюда из вакуолей и цитоплазмы трахеальных элементов, заканчивающих свое развитие. Ксилемный сок по составу резко отличается от вакуолярго. Например, содержание иона К+ в вакуолях эпикотиля гороха достигает 55 — 78 ммоль/л, а в ксилемном соке — лишь 2—4 ммоль/л. Загрузка ксилемы наиболее интенсивно происходит в зоне корневых волосков. В этой зоне функционируют один или два насоса. Основной сое локализован в плазмалемме клеток ризодермы и коровой паренхимы. Он обусловлен работой Н+-помп, в качестве которых выступают Н+-АТРазы и протонперенсщие редокс-цепи. В этой части корня катионы и анионы из клеточных стенок поступают в цитоплазму. Через клетки эндодермы с поясками Каспари вода и минеральные соли проходят только по симпласту. В паренхимных клетках пучка, непосредственно примыкающих к трахеидам или сосудам, функционирует второй насос, выделяющий минеральные вещества, которые через поры в стенках трахеальных элементов попадают в их полости. Благодаря активной работе двух насосов в трахеидах и сосудах увеличивается осмотический потенциал и, следовательно, сосущая сила.
|