Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факторный анализ.





В основе факторного анализа — предположение о том, что на основании статистических данных может быть получена ана­литическая зависимость, отражающая степень влияния факто­ров и изменения их значений на плановые или фактические по­казатели, характеризующие ситуацию.

Факторный анализ решает задачи определения:

­ факторов, необходимых для выявления всех существенных зависимостей, влияющих на развитие ситуации;

­ коэффициентов (называемых иногда нагрузками), характе­ризующих влияние каждого из выявленных факторов на показатели, отражающие состояние и развитие ситуации.

Применение метода факторного анализа позволяет на ос­нове обработки статистической информации классифициро­вать факторы на существенные и несущественные, основные и неосновные, внутренние и внешние.

По результатам обработки статистических данных может устанавливаться необходимость и производиться детализация факторов либо, наоборот, может устанавливаться необходи­мость и производиться укрупнение факторов.

Рассчитанные на основании обработки данных коэффици­енты влияния каждого из выделенных факторов позволяют, с одной стороны, определить ранжирование факторов по важ­ности, т. е. расположить факторы в порядке убывания их важ­ности, а с другой — получить формулу для расчета ожидаемых значений показателей, характеризующих ситуацию, при том или ином изменении значений факторов.

Полученные при использовании факторного анализа ре­зультаты позволяют более обоснованно оценивать ожидаемые изменения ситуации при тех или иных ожидаемых изменени­ях факторов вследствие наметившихся тенденций либо управ­ленческих воздействий, целесообразность которых устанавли­вается в процессе использования технологий ситуационного анализа.

Факторный анализ — это процедура установления силы влияния факторов на функцию или результативный признак (полезный эф­фект машины элементы совокупных затрат, производительности труда и т.д.) с целью ранжирования факторов для разработки плана орга­низационно-технических мероприятий по улучшению функции.

Применение методов факторного анализа требует большой под­готовительной работы и трудоемких по установлению моделей рас­четов. Поэтому без компьютера не рекомендуется применять методы кор­реляционного и регрессионного анализа, главных компонент. К тому же в настоящее время для компьютера различных классов имеются стан­дартные программы по этим методам. В свою очередь пользоваться установленными с помощью компьютера моделями очень просто.

На подготовительной стадии факторного анализа большое внима­ние следует уделять качеству матрицы исходных данных для компьютера. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.

К исходным данным предъявляются следующие требования:

а) в объем выборки должны включаться данные только по одно­родной совокупности объектов анализа, т.е. одного назначения и класса, используемых (изготавливаемых, функционирующих) в ана­логичных условиях по характеру и типу производства, режиму ра­боты, географическому району и т.д. В том случае, когда необходи­мо увеличить размер матрицы, исходные данные отдельных объек­тов могут быть приведены в сравнимый вид с большинством объектов по отличающимся признакам путем умножения их на корректирующие коэффициенты;

б) период динамического ряда исходных данных должен быть небольшим, но, по возможности, одинаковым для всех объектов. Устойчивый период упреждения (зона прогноза) обычно в два и более раза меньше периода динамического ряда. Например, по дан­ным за 1985-1995гг. можно разработать прогноз до 2000г., а в после­дующие годы по фактическим данным модель должна обновляться (уточняться);

в) исходные данные должны быть качественно однородными, с небольшими интервалами между собой;

г) следует применять одинаковые методы или источники фор­мирования данных. Если динамический ряд имеет крупные струк­турные сдвиги (например из-за изменения цен, ассортимента вы­пускаемой продукции, программы ее выпуска и т.д.), то все данные должны быть приведены в сравнимый вид или одинаковые условия;

д) отдельные исходные данные должны быть независимы от пре­дыдущих и последующих наблюдений. Например, наблюдение не дол­жно определяться расчетным путем по предыдущему наблюдению.

Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты пред­полагается выполнять на компьютере по стандартной программе. Конеч­ные результаты расчета выдаются на печать (табл. 4.3).

Таблица 4.3

Основные параметры корреляционно-регрессионного анализа

 

Название параметра Обоз­наче­ние Что характеризует параметр и для чего применяется Оптимальное зна­чение параметра
       
1. Объем вы­борки m Количество данных по фак­тору (размер матрицы по вертикали). Применяется для установления тенденций из­менения фактора Не менее чем в 3-5раз больше коли­чества факторов (nxi) С увеличением количества факто­ров кратность должна увеличи­ваться
2. Коэффици­ент вариа­ции Vi Уровень отклонения значений факторов от средней анализи­руемой совокупности Меньше 33 %
3. Коэффици­ент парной корреляции rxy Тесноту связи между i-м фак­тором и функцией. Применя­ется для отбора факторов Больше 0,1
4. Коэффициент частной кор­реляции rxx Тесноту связи между факто­рами. Применяется для отбо­ра факторов Чем меньше, тем лучше модель
5. Коэффициент множествен­ной корреля­ции R Тесноту связи одновременно между всеми факторами и функцией. Применяется для выбора модели Больше 0,7
6. Коэффициент множествен­ной детерми­нации D Долю влияния на функцию включенных в модель факто­ров. Равен квадрату коэффи­циента множественной корре­ляции Больше 0,5
7. Коэффициент асимметрии А Степень отклонения фактиче­ского распределения случай­ных наблюдений от нормаль­ного по центру распределения. Применяется для проверки нормальности распределения Метод наименьших квадратов может применяться при А меньше трех
8. Коэффициент эксцесса Е Плосковершинность распределения случайных наблюдений от нормального по цен­ тру распределения Применяется для проверки нормальности распределения функции Е должен быть меньше трех
9. Критерий Фишера F Математический критерий, характеризующий значимость уравнения регрессии. Приме­няется для выбора модели F должен быть больше табличного значения, установ­ленного для раз­личных размеров матрицы и вероят­ностей
10. Критерий Стьюдента t Существенность факторов, входящих в модель. Приме­няется для выбора модели Больше двух (при вероятности, рав­ной 0,95)
11. Среднеквад-ратическая ошибка коэф­фициентов регрессии Δai Точность полученных коэф­фициентов регрессии. Применяется для оценки коэффици­ентов регрессии В два и более раза меньше соответствующего ко­эффициента регрес­сии
12. Ошибка аппрокси­мации Е Допуск прогноза или степень несоответствия эмпирической зависимости теоретиче­ской. Применяется для оцен­ки адекватности (точности) ­модели Меньше (точнее)+15%
13. Коэффици­ент элас­тичности Эi Показывает, на сколько про­центов изменяется функция при изменении соответст­вующего фактора на 1 %.Применяется для ранжирова­ния факторов по их значимо­сти Больше 0,01

 

Факторный анализ следует проводить в следующей последова­тельности:

1. Обоснование объекта анализа, постановка цели.

2. Сбор исходных данных и их уточнение в соответствии с ранее описанными требованиями.

3. Построение гистограмм по каждому фактору с целью опреде­ления форм распределения случайных наблюдений.

Построение по каждому фактору корреляционных полей, т.е. гра­фическое изображение функций от фактора с целью предварительно­го определения тесноты и формы связи между функцией и каждым фактором. Примеры корреляционных полей показаны на рис. 4.2.

Рис. 4.2. Примеры корреляционных полей

Корреляционные поля построены по исходным статистическим данным X1 — Х4 (факторы) и Y (функция). Анализ корреляционных полей показывает, что:

а) между Y и X4 теснота связи слабая, по форме она линейная, обратно пропорциональная;

б) между Y и Х1 теснота связи высокая, по форме она линейная, прямо пропорциональная;

в) между Y и Х3 связи нет, т.к. функцию Y = f(X3) можно прове­сти в любом направлении;

г) между Y и Х4 теснота связи высокая, форма связи — гипербо­лическая, после линии А—А фактор Х4 на Y уже не оказывает влияния.

4. Составление матрицы исходных данных производится по сле­дующей форме:

№ п/п Y X1 Х2 X3 Принадлежность строки
  5,80 0,93 1,47     Цех №1, I квартал 1997 г.
  6,15 0,82 1,59     Цех № 1, II квартал 1997 г.

 

и т. д.

В матрицу исходных данных следует включать факторы, имею­щие примерно такую форму связи, как Y с X1 и Х2 на рис. 4.2. Фактор Х3 с Y не имеет связи, поэтому этот фактор не следует включать в матрицу, фактор Х4 тоже не следует включать в матри­цу, поскольку после линии А—А этот фактор влияния на Y не ока­зывает. Влияние подобных факторов на Y следует учитывать при помощи коэффициентов, определяемых отдельно для каждого фактора и группы предприятий.

Исследования показывают, что к организационным факто­рам, имеющим с экономическими показателями гиперболическую форму связи, относятся уровень освоенности продукции в устано­вившемся производстве, программа ее выпуска и др.

5. Ввод информации и решение задачи на компьютере.

В экономических исследованиях для многофакторных регресси­онных моделей чаще всего приемлемы две формы связи факторов с функцией: линейная и степенная. Для двухфакторных моделей при­меняются также гиперболическая и параболическая формы связи.

6. Анализ уравнения регрессии и его параметров в соответ­ствии с требованиями, изложенными в табл. 4.3.

7. Составление матрицы исходных данных для окончательной модели и решение ее на компьютере. Апробация окончательной модели путем подстановки в нее фактических данных по одной из строк матрицы и сравнение полученного значения функции с ее факти­ческим значением.

При составлении новых матриц исходных данных из них исклю­чаются поочередно:

а) один из двух факторов, коэффициент частной корреляции между которыми значительно больше коэффициентов парной кор­реляции между функцией и этими факторами. Например, если между двумя факторами коэффициент частной корреляции равен 0,95, а коэффициенты парной корреляции между функцией и эти­ми факторами равны 0.18 и 0,73, то первый фактор с коэффициен­том парной корреляции, равным 0,18, из матрицы можно исклю­чить;

б) факторы с коэффициентами парной корреляции между ними и функцией менее 0,1;

в) только после соблюдения требований а) и б) исключаются из матрицы факторы, имеющие с функцией обратную, с точки зрения экономической сущности, связь. Например, с повышением сменно­сти работы цеха (фактор) должна расти его годовая производитель­ность (функция). Обратная же зависимость между ними свидетель­ствует о нерегулярном и недостоверном учете коэффициента смен­ности, а возможно, и производительности оборудования, либо о неправильной методике расчета этих показателей. Поэтому в этом случае фактор необходимо исключить из матрицы исходных дан­ных и изучать систему учета.

Из матрицы могут быть исключены также отдельные строки по предприятиям (периодам), не отвечающие ранее описанным требо­ваниям.

Параметры окончательного уравнения регрессии должны отве­чать требованиям табл. 4.3. Если невозможно этого достигнуть, мо­дель для ранжирования факторов и прогнозирования экономичес­ких показателей не может быть использована. Она пригодна только для предварительного отбора факторов.

8. И последнее — ранжирование.

Ранжирование факторов осуществляется по показателю их элас­тичности. Фактору с наибольшим коэффициентом эластичности при­сваивается первый ранг, и он является важнейшим. Например, если два фактора имеют коэффициенты эластичности, равные 0,35 и 0,58, то второму фактору нужно отдать предпочтение перед первым при распределении ресурсов на улучшение данной функции (при улуч­шении второго фактора на 1% функция улучшается на 0,58%, а по первому фактору — 0,35%).

Нами проведены специальные исследования зависимостей меж­ду элементами затрат и организационными факторами (программа выпуска продукции, уровень ее освоенности, тенденция роста про­изводительности труда). Результаты исследований показали, что эти факторы на экономические показатели оказывают влияние только в определенных границах по гиперболической форме связи. Поэтому эти факторы не должны включаться в общую многофакторную мо­дель, их влияние на функцию должно учитываться отдельно. На­пример, себестоимость продукции прогнозируется по формуле

З = Зр · Кm · Косв · Кпрt (4.2)

где 3 — прогнозное значение себестоимости продукции, рас­считанное с учетом организационных факторов производства и тех­нических параметров конструкции;

Зр — прогнозное значение себестоимости продукции, рас­считанное по ее техническим параметрам;

Кm — коэффициент, учитывающий влияние на себестои­мость изменения программы выпуска нового изделия по сравне­нию с программой выпуска базового (или группы аналогичных про­ектируемому) изделия. Для изделий массового выпуска этот коэф­фициент равен единице;

Косв — коэффициент, учитывающий влияние на себесто­имость уровня освоенности конструкции изделия;

Кпрt — коэффициент, учитывающий закономерность не­уклонного роста производительности труда. Он определяется по формуле

(4.3)

где ΔП — среднегодовой (за последние 5 лет) прирост про­изводительности труда на предприятии (по общему объему продаж);

α — доля фонда заработной платы в себестоимости продук­ции, доли единицы;

t — интервал времени в годах, разделяющий периоды вы­пуска базовой и новой продукции.

Анализ применения регрессионных моделей показывает, что в общем случае с повышением коэффициента множественной корре­ляции улучшаются другие параметры модели. Однако между коэф­фициентом множественной корреляции и ошибкой аппроксимации не наблюдается устойчивой связи. Покажем это на примере.

Для ранжирования факторов, например, влияющих на годовые зат­рать! на эксплуатацию и ремонты воздушных поршневых компрессо­ров в условиях ряда машиностроительных предприятий Краснодарс­кого края, окончательно были установлены следующие зависимости:

Y1 = 25,7 + 1,53X6 – 0,158X7 – 4,09X8 + 0,0223X9,

Y1 = 0,91X60.967 · X7–0.817 · X8–1,525 · X90.065

где Y1 — годовые затраты на эксплуатацию и ремонт воздушных поршневых компрессоров в условиях краснодарских машинострои­тельных заводов, у.е.;

X6 — годовая производительность компрессора, м3;

Х7 — уровень централизации изготовления запасных частей к компрессорам, %;

X8 — средний разряд рабочих, обслуживающих эти комп­рессоры;

X9 — возраст компрессоров на 01.01.1995 г. (по дате их изго­товления), лет.

Структура затрат в данном примере: около 60% — энергия и топливо, 25 — заработная плата, 6 — амортизация, 6 — ремонты (без энергии и заработной платы), 3% — вспомогательные материалы.

Для обоих уравнений коэффициенты множественной корреляции равны 0,95. Ошибка аппроксимации для линейной формы связи рав­на ±21,4%, а для степенной ±11,5%. Вторая модель почти в два раза точнее первой, хотя коэффициенты корреляции одинаковы. Коэффи­циенты эластичности факторов по этим уравнениям отличаются не­значительно: для линейной формы связи соответственно 0,900; 0,980; 1,630; 0,060, а для степенной — 0,967; 0,817; 1,525 и 0,065.

Между коэффициентами корреляции и эластичности тоже от­сутствует устойчивая связь.

Регрессионные модели могут также применяться для установле­ния факторов, оказывающих влияние на различные экономические показатели.

Факторный анализ может проводиться и без компьютера, однако это значительно повышает трудозатраты на его проведение и увеличивает время, требующееся для осуществления анализа.

 







Дата добавления: 2015-06-29; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия