Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изопроцессы идеального газа





Уравнение первого закона термодинамики можно записать для равновесных процессов изменения его состояния в ином виде, используя выражения для теплоемкости однородного тела, откуда или с учетом молярной теплоемкости: , а для одного моля .

Тогда первый закон можно записать в виде:

Применим его к различным изопроцессам идеального газа.

 

1. Изохорный процесс, .(закон Шарля).

На диаграмме это вертикальная прямая: 1 – 2 нагрев, а 1 - 3 охлаждение. Практически этот процесс проводят, изменяя температуру газа, находящегося в толстостенном сосуде с неизменным объемом. В этом процессе работа не совершается: . Вся теплота идет на изменение его внутренней энергии. ,

(1), где - молярная теплоемкость при постоянном объеме. Из опытов известно, что зависит от химического состава газа и его Т. Для не очень широкой области температур можно считать, что =const.

При изохорном конечном нагреве газа от температуры Т1 до температуры Т2 изменение внутренней энергии равно

(2), и теплота, сообщенная системе:

(3)

Для идеального газа внутренняя энергия это энергия теплового движения молекул, непосредственно не зависящая от объема (расстояния между молекулами), как в реальных газах. При расширении и сжатии газа его будет изменяться только за счет изменения кинетической энергии теплового движения, т.е., за счет температуры. Таким образом, соотношения (1) и (2) справедливы для любого процесса изменения состояния идеального газа, а не только изохорного. Внутренняя энергия газа зависит только от его массы, химического состава и температуры. Это подтверждается опытами Гей – Люссака и Джоуля.

Значит, для любого равновесного процесса изменения состояния идеального газа уравнение первого закона термодинамики имеет вид:

(4)

 

2. Изобарный процесс, . (Закон Гей -Люссака)

Он реализуется при нагревании газа в цилиндре с подвижным поршнем, на который действует постоянное внешнее давление.

На рис. изображены процессы изобарного расширения газа при его нагревании (1-2) и изобарного сжатия при его охлаждении (2-3).

Элементарная теплота, сообщенная газу в изобарном процессе:

(5), где - молярная теплоемкость при постоянном давлении.

Элементарная работа, совершенная идеальным газом при этом:

(6), учитывая уравнение Менделеева –Клапейрона.

Из последнего уравнения можно выяснить смысл :

, т.е. универсальная газовая постоянная численно равна работе, совершенной одним молем идеального газа при его изобарном нагревании на 1К.

Подставим в первый закон выражения для и и найдем связь между и :

, откуда: (7) – уравнение Майера для молярных теплоемкостей. Отсюда видно, что при изобарном нагревании газа к нему должна быть подведена большая теплота, чем для такого же изохорного нагревания, разность их равна работе, совершенной газом при изобарном расширении.

Работа газа при изобарном расширении при переходе из состояния 1 в состояние 2, рис.

(8).

Если постоянная, то теплота, сообщенная газу в изобарном процессе:

(9), а изменение внутренней энергии в процессе:

(10).

 

3. Изотермический процесс, Т=const. (закон Бойля – Мариотта)

Может происходить в условиях, когда теплообмен между газом и внешней средой осуществляется при постоянной (конечной) разности температур. Для этого теплоемкость внешней среды должна быть велика и процесс расширения или сжатия должен идти весьма медленно (для квазиравновесия). Изотермическими являются процессы кипения, конденсации, плавления и кристаллизации химически чистых веществ, происходящих при постоянном давлении.

Для идеального газа в этом процессе выполняется закон Бойля – Мариотта: , графиком которого является гипербола, рис.. Внутренняя энергия газа постоянна в процессе, значит:

(11), а ,

т.е., вся теплота, сообщенная системе, идет на совершение газом работы против внешних сил:

(12)

При изотермическом расширении , к нему подводится теплота , газ совершает положительную работу, , рис., процесс 1-2. При сжатии газа, процесс 1-3, работа, совершенная газом отрицательна, положительную работу при этом выполняют внешние силы, От газа отводится теплота .

Теплоемкость газа в изотермическом процессе ± µ, т.к., .

4. Адиабатный процесс, .

Это процесс, при котором система не обменивается теплотой с окружающей средой. Практически процесс производят при достаточно быстром расширении или сжатии газа.

Тогда из первого закона следует:

- система совершает работу за счет убыли внутренней энергии. Или, записывая более подробно, получим:

(13)

Здесь теплоемкость при адиабатном процессе - , т.к., .

Из (13) видно, что (14)

При расширении и , газ охлаждается, при адиабатном сжатии и , газ нагревается.

Связь между параметрами состояния адиабатного процесса можно найти, взяв дифференциалы от и от уравнения Менделеева - Клапейрона:

(15), отсюда можно выразить , подставить в уравнение (14) и получить: . Заменив здесь из уравнения Майера, получим после простых преобразований:

, далее разделим переменные, поделив уравнение на и обозначим - показатель адиабаты или постоянная Пуассона.

Тогда . После интегрирования или:

Это есть уравнение адиабаты или уравнение Пуассона. С помощью уравнения Менделеева – Клапейрона его можно записать через другие параметры:

или .

Из рис. видно, что адиабата идет круче, чем изотерма, поскольку для любого идеального газа. Это объясняется тем, что при адиабатном сжатии увеличение давления происходит не только из-за уменьшения объема, как в изотермическом процессе, но и из-за возрастания температуры. При адиабатном расширении газа его температура уменьшается и давление падает сильнее, чем при соответствующем изотермическом расширении.

Работа в адиабатном (конечном) процессе 1-2 (на рис. площадь под кривой)

 







Дата добавления: 2015-08-12; просмотров: 942. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия