Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характер теплового движения молекул





Если газ находится в равновесии, его молекулы движутся совершенно хаотически. Все направления движения равновероятны, ни одному из них не может быть отдано предпочтение, из-за этого молекулы будут равномерно распределены по объему. Скорости молекул могут быть самыми различными по величине. При каждом соударении с другой молекулой скорость данной молекулы может, как возрасти, так и уменьшиться с равной вероятностью. Изменение v молекулы происходит случайным образом. Скорость молекулы не может быть равной бесконечности, а также равной 0. Следовательно, очень малые и очень большие скорости молекул по сравнению со средней скоростью <v> маловероятны; скорости молекул группируются в основном вблизи некоторого наиболее вероятного значения скорости.

Например, линейный размер молекулы кислорода» 4 А, объем 10-23

см3. При нормальных условиях на одну молекулу приходится объем» 0,4×10-19

см3. Т.е., молекулы встречаются редко, проходя путь» 1000А между столкновениями. Т.к. скорость молекул велика, примерно 500 м/с, столкновения происходят через 10-10 с. Удары о стенки сосуда ничего не меняют, т.к. скорость изменяется только по направлению.

Молекулы притягиваются, когда расстояние между ними имеет порядок их размеров. Значит, большую часть пути они движутся прямолинейно и равномерно. Время взаимодействия очень мало» 10-13 с, т.е., взаимодействие можно считать соударением. Большую часть «своей жизни» молекула проводит в свободном движении по инерции.

Хаотичность движения молекул наглядна, если взять сферу некоторого произвольного радиуса r с центром в т. О. Любая т. А на сфере определяет направление от О к А. След-но направление движ. мол. в нек. момент времени м.б. задан. точками на сфере. Равновероятность всех напр. приводит к тому, что точки, изображающие напр. движ. мол., распределяется по сфере с пост. плотностью, равной числу мол. N/4πr2. Соударения приводит к измен. направлений движ. мол., поэтому положение N точек на сфере неопред. меняются, однако плотность точек из-за хаотичности движ. остается пост.

Можно найти какое кол-во мол. движется в напр., близких к данному (А). Таким напр. соответствуют все точки элемента пов. ΔS в окрестности т.А. В пределах ΔS будет

(*) ΔNA = N(ΔS/4πr2) = NΔΩ/4π ΔΩ тел угол, в кот. закл.напр.

Индекс А означает, что имеются ввиду мол. с направл. ≈ А. Направление ОА можно задать с помощью полярного угла θ и азимут угла φ отсчитываемых от напр. ОZ и плоск. Р0. Разделив dS/r2 получим элемент тел. угла, отвечающий инт. углов от θ до θ+dθ и от φ до φ+dφ

dΩ = sinθdθdφ

Две сферы с r и r+dr, два конуса с углами раствора θ и θ+dθ и две плоскости, образующие с Р0 углы φ и φ+dφ образуют в пр-ве прямоуг. параллелепипед с объемом

dV = dSdr = r2sinθdrdθdφ –

элемент объема в сферической сист. коорд. (объем, отвечающий приращению корд. r, θ, φ на dr, dθ, dφ)

Перейдя от дельт и диффер. в ф-ле (*) и подставив dΩ получим

dNv = N(dΩvφ/4π) = Nsinθdθdφ/4π

Индексы указывают на то, что имеются в виду молекулы, напр. движ. которых отвечают интервалам углов от θ до θ+dθ и от φ до φ+dφ.

 







Дата добавления: 2015-08-12; просмотров: 527. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия