Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формулировка принципа максимума в задаче





Со свободным правым концом

Рассмотрим задачу со свободным правым концом (рис. 3.2).

Пусть процесс описывается системой уравнений

, , (3.4)

где – n-мерный вектор состояния – r-мерный вектор управляющих воздействий. Заданы начальные условия .

Правый конец траектории свободен.

Рис. 3.2. Графическая иллюстрация задачи со свободным правым

Концом

Управление u определено в допустимой области, .

Необходимоопределить вектор управления , обеспечивающий минимум функционала

, (3.5)

где .

Решение задачи можно построить просто, если найти некоторую функцию, тесно связанную с функционалом Jи динамикой процесса. Условия минимума функционала Jследуют из условия максимума функции Гамильтона Н, характеризующей сумму кинетической и потенциальной энергии и выражающейся в виде скалярного произведения вектора количества движения на вектор координат системы

, (3.6)

где – вектор количества движения.

Вектор количества движения определяется как решение дифференциального уравнения.

, (3.7)

при конечном условии

,

где – постоянные, входящие в функционал J.

Дифференцирование гамильтониана H по дает

,

а по

. (3.8)

Из уравнений (3.4), (3.7), (3.8)можно получить уравнения в канонической форме Гамильтона

, (3.9)

, , (3.10)

которые должны интегрироваться при условиях:

, .

Принцип максимума: если управление доставляет минимум функционалу J, то необходимо существование такой ненулевой непрерывной вектор-функции

,

что управление удовлетворяет условию

.

Таким образом, 2n уравнений (3.4) и (3.10) с 2n неизвестными и и условие дают решение задачи.

Для решения задачи о минимуме функционала (3.5) при дифференциальных связях (3.4) необходимо:

1. Составить функцию .

2. Определить сопряженную систему уравнений с конечными условиями .

3. Проинтегрировать исходную (3.4) и сопряженную (3.10) системы уравнений.

4. Составить условие максимума функции Н, из которого определить оптимальное управление

Заметим, что для исходной системы уравнений (3.4) заданы начальные условия при , , а для сопряженной системы (3.10) заданы конечные условия в конце интервала , .

Поэтому процесс вычисления оптимального управления можно вести от начала интервала к концу или же, наоборот, от конца к началу. В первом случае, зная переменные состояния в начале интервала, задаются произвольно значениями переменных при .







Дата добавления: 2015-08-12; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия