Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИНЦИП МАКСИМУМА





Задачи определения оптимальных процессов характеризуются двумя наиболее важными особенностями:

1) минимизируемый функционал зависит не только от фазовых координат , изменяющихся непрерывно, но и от управляющих воздействий которые могут быть кусочно-непрерывными функциями с конечным числом точек разрыва первого рода (рис. 3.1);

Рис. 3.1. Управляющее воздействие

2) ограничения на фазовые координаты и управляющие воздействия выражаются в виде неравенств

, .

Это значит, что фазовые траектории и управления могут частично или полностью проходить по границе допустимой области. Физический смысл рассмотрения замкнутой и ограниченной области управления ясен: управляющими параметрами могут служить количество подаваемого в печь топлива,температура реактора, количество подаваемого в колонну пара или флегмы и т.п., которые не могут принимать сколь угодно больших или малых значений.

Каждую функцию , определенную на некотором отрезке времени и принимающую значения в области управления ,будем называть управлением. Так как представляет собой множество в пространстве управляющих параметров , то каждое управление является вектор-функцией, значения которой лежат в допустимой области .

Допустимым управлением условимся называть всякую кусочно-непрерывную функцию со значениями в области управления , имеющую в каждой точке разрыва значение равное пределу слева

и непрерывную на концах отрезка .

Задача с ограничениями, наложенными накоординаты и управления методами классического вариационного исчислениярешаются лишь в частных случаях.

В реальных системах, где управление и фазовые переменные удовлетворяют ограничениям, мощным инструментом решения задачи оптимизации является метод, предложенный в 1956 г. Понтрягиным Л.С., Болтянским Б.Г., Гамкрелидзе Р.В., Мищенко Е.Ф., называемый принципом максимума [1,4].

Принцип максимума является необходимым условием оптимальности для нелинейных систем, а длялинейных – необходимым и достаточным.

Из многих задач оптимального управления имеют существенное значение три задачи: задача максимального быстродействия, задача управления конечным состоянием и задача управления по минимуму интеграла.

Задачи по минимуму времени, по минимуму интеграла и управления конечным состоянием являются частным случаем задачи минимизации по отношению к одной координате.

Рассмотрим управление процессом n-го порядка

, . (3.1)

Необходимо определить управление, обеспечивающее минимум функционала

. (3.2)

Введем новую переменную уравнением с начальным условием . Интегрируя уравнение, получим

. (3.3)

Тогда задача отыскания минимума функционала (3.2) сводится к задаче отыскания минимума -ой координаты в конечной точке траектории, т.е. при (3.3).

Задачи оптимального управления можно рассматривать как частные случаи более общей задачи отыскания максимума или минимума функционала







Дата добавления: 2015-08-12; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия