Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИНЦИП МАКСИМУМА





Задачи определения оптимальных процессов характеризуются двумя наиболее важными особенностями:

1) минимизируемый функционал зависит не только от фазовых координат , изменяющихся непрерывно, но и от управляющих воздействий которые могут быть кусочно-непрерывными функциями с конечным числом точек разрыва первого рода (рис. 3.1);

Рис. 3.1. Управляющее воздействие

2) ограничения на фазовые координаты и управляющие воздействия выражаются в виде неравенств

, .

Это значит, что фазовые траектории и управления могут частично или полностью проходить по границе допустимой области. Физический смысл рассмотрения замкнутой и ограниченной области управления ясен: управляющими параметрами могут служить количество подаваемого в печь топлива,температура реактора, количество подаваемого в колонну пара или флегмы и т.п., которые не могут принимать сколь угодно больших или малых значений.

Каждую функцию , определенную на некотором отрезке времени и принимающую значения в области управления ,будем называть управлением. Так как представляет собой множество в пространстве управляющих параметров , то каждое управление является вектор-функцией, значения которой лежат в допустимой области .

Допустимым управлением условимся называть всякую кусочно-непрерывную функцию со значениями в области управления , имеющую в каждой точке разрыва значение равное пределу слева

и непрерывную на концах отрезка .

Задача с ограничениями, наложенными накоординаты и управления методами классического вариационного исчислениярешаются лишь в частных случаях.

В реальных системах, где управление и фазовые переменные удовлетворяют ограничениям, мощным инструментом решения задачи оптимизации является метод, предложенный в 1956 г. Понтрягиным Л.С., Болтянским Б.Г., Гамкрелидзе Р.В., Мищенко Е.Ф., называемый принципом максимума [1,4].

Принцип максимума является необходимым условием оптимальности для нелинейных систем, а длялинейных – необходимым и достаточным.

Из многих задач оптимального управления имеют существенное значение три задачи: задача максимального быстродействия, задача управления конечным состоянием и задача управления по минимуму интеграла.

Задачи по минимуму времени, по минимуму интеграла и управления конечным состоянием являются частным случаем задачи минимизации по отношению к одной координате.

Рассмотрим управление процессом n-го порядка

, . (3.1)

Необходимо определить управление, обеспечивающее минимум функционала

. (3.2)

Введем новую переменную уравнением с начальным условием . Интегрируя уравнение, получим

. (3.3)

Тогда задача отыскания минимума функционала (3.2) сводится к задаче отыскания минимума -ой координаты в конечной точке траектории, т.е. при (3.3).

Задачи оптимального управления можно рассматривать как частные случаи более общей задачи отыскания максимума или минимума функционала







Дата добавления: 2015-08-12; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия