Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИНЦИП МАКСИМУМА





Задачи определения оптимальных процессов характеризуются двумя наиболее важными особенностями:

1) минимизируемый функционал зависит не только от фазовых координат , изменяющихся непрерывно, но и от управляющих воздействий которые могут быть кусочно-непрерывными функциями с конечным числом точек разрыва первого рода (рис. 3.1);

Рис. 3.1. Управляющее воздействие

2) ограничения на фазовые координаты и управляющие воздействия выражаются в виде неравенств

, .

Это значит, что фазовые траектории и управления могут частично или полностью проходить по границе допустимой области. Физический смысл рассмотрения замкнутой и ограниченной области управления ясен: управляющими параметрами могут служить количество подаваемого в печь топлива,температура реактора, количество подаваемого в колонну пара или флегмы и т.п., которые не могут принимать сколь угодно больших или малых значений.

Каждую функцию , определенную на некотором отрезке времени и принимающую значения в области управления ,будем называть управлением. Так как представляет собой множество в пространстве управляющих параметров , то каждое управление является вектор-функцией, значения которой лежат в допустимой области .

Допустимым управлением условимся называть всякую кусочно-непрерывную функцию со значениями в области управления , имеющую в каждой точке разрыва значение равное пределу слева

и непрерывную на концах отрезка .

Задача с ограничениями, наложенными накоординаты и управления методами классического вариационного исчислениярешаются лишь в частных случаях.

В реальных системах, где управление и фазовые переменные удовлетворяют ограничениям, мощным инструментом решения задачи оптимизации является метод, предложенный в 1956 г. Понтрягиным Л.С., Болтянским Б.Г., Гамкрелидзе Р.В., Мищенко Е.Ф., называемый принципом максимума [1,4].

Принцип максимума является необходимым условием оптимальности для нелинейных систем, а длялинейных – необходимым и достаточным.

Из многих задач оптимального управления имеют существенное значение три задачи: задача максимального быстродействия, задача управления конечным состоянием и задача управления по минимуму интеграла.

Задачи по минимуму времени, по минимуму интеграла и управления конечным состоянием являются частным случаем задачи минимизации по отношению к одной координате.

Рассмотрим управление процессом n-го порядка

, . (3.1)

Необходимо определить управление, обеспечивающее минимум функционала

. (3.2)

Введем новую переменную уравнением с начальным условием . Интегрируя уравнение, получим

. (3.3)

Тогда задача отыскания минимума функционала (3.2) сводится к задаче отыскания минимума -ой координаты в конечной точке траектории, т.е. при (3.3).

Задачи оптимального управления можно рассматривать как частные случаи более общей задачи отыскания максимума или минимума функционала







Дата добавления: 2015-08-12; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия