ПРИНЦИП МАКСИМУМА
Задачи определения оптимальных процессов характеризуются двумя наиболее важными особенностями: 1) минимизируемый функционал зависит не только от фазовых координат Рис. 3.1. Управляющее воздействие 2) ограничения на фазовые координаты и управляющие воздействия выражаются в виде неравенств
Это значит, что фазовые траектории и управления могут частично или полностью проходить по границе допустимой области. Физический смысл рассмотрения замкнутой и ограниченной области управления Каждую функцию Допустимым управлением условимся называть всякую кусочно-непрерывную функцию и непрерывную на концах отрезка Задача с ограничениями, наложенными накоординаты и управления методами классического вариационного исчислениярешаются лишь в частных случаях. В реальных системах, где управление и фазовые переменные удовлетворяют ограничениям, мощным инструментом решения задачи оптимизации является метод, предложенный в 1956 г. Понтрягиным Л.С., Болтянским Б.Г., Гамкрелидзе Р.В., Мищенко Е.Ф., называемый принципом максимума [1,4]. Принцип максимума является необходимым условием оптимальности для нелинейных систем, а длялинейных – необходимым и достаточным. Из многих задач оптимального управления имеют существенное значение три задачи: задача максимального быстродействия, задача управления конечным состоянием и задача управления по минимуму интеграла. Задачи по минимуму времени, по минимуму интеграла и управления конечным состоянием являются частным случаем задачи минимизации по отношению к одной координате. Рассмотрим управление процессом n-го порядка
Необходимо определить управление, обеспечивающее минимум функционала
Введем новую переменную
Тогда задача отыскания минимума функционала (3.2) сводится к задаче отыскания минимума Задачи оптимального управления можно рассматривать как частные случаи более общей задачи отыскания максимума или минимума функционала
|