Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Реактора идеального смешения





Рассмотрим задачу минимизации себестоимости продукта реакции в реакторе идеального смешения.

Для реакции первого порядка найти оптимальные условия, минимизирующие себестоимость получаемого продукта Р из исходного продукта А, определяемую с учетом затрат на сырье и амортизацию реактора.

Скорости образования компонентов А и Р имеют вид:

,

.

где , – константы скорости реакций, связаны с температурой реакции уравнением Аррениуса

,

,

Критерий оптимальности, значение которого необходимо минимизировать, в данном случае имеет вид:

,

где – концентрация сырья в реакционной смеси, подаваемой в реактор; – концентрация продукта на выходе реактора; – стоимость исходного сырья; – стоимость единицы объема реактора, исчисляемая с учетом его амортизации; V – объем реактора; – скорость потока сырья, поступающего в зону идеального смешении; , – предэкспоненциальные множители; – универсальная газовая постоянная; Т – температура в реакционной зоне; , – энергия активации компонентов.

Минимизация критерия оптимальности R производится выбором оптимальных значений температуры в реакторе Т и времени пребывания реагентов в реакторе .







Дата добавления: 2015-08-12; просмотров: 500. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия